j*******a 发帖数: 101 | 1 一个股票有jump,一个没有,有jump的valotilty大,所有option的价格高,这个好理
解。
有的书用hedge来解释这个:Suppose we short a call option of price C(S_0, 0) (
the black-scholes option price with no jumps) and hold dC/ds units of stocks
. If a jump does not happen, the hedge works perfectly. The call option
price is a convex function. If we graph the option price as a function of
spot for any time t, any tangent of the graph will lie blow. When a jump
happens, we will move instantly along this tangent line, and hence finish at
a point which is below the Black-Scholes price. We continue to hedge as
before. Hence, if a jump occurs the portfolio value will be less than the
Black-Scholes price. Thus by no arbitrage considerations, the value of the
option on the stock with jumps must be great than C(S_0, 0).
关键是这个最后一句,很难理解,各位给点拨一下。多谢!!! | s********r 发帖数: 529 | 2 你站在卖空期权的那一方想一下,这样子就比较好理解了
(
stocks
at
【在 j*******a 的大作中提到】 : 一个股票有jump,一个没有,有jump的valotilty大,所有option的价格高,这个好理 : 解。 : 有的书用hedge来解释这个:Suppose we short a call option of price C(S_0, 0) ( : the black-scholes option price with no jumps) and hold dC/ds units of stocks : . If a jump does not happen, the hedge works perfectly. The call option : price is a convex function. If we graph the option price as a function of : spot for any time t, any tangent of the graph will lie blow. When a jump : happens, we will move instantly along this tangent line, and hence finish at : a point which is below the Black-Scholes price. We continue to hedge as : before. Hence, if a jump occurs the portfolio value will be less than the
| l******i 发帖数: 1404 | 3 我胡诌两句:
就是说在无jump情况下,option价格=用来hedge option的portfolio A价格=C(S_0, 0),
现在有jump了,portfolio A不能完全hedge了,会亏钱。
所以要在portfolio A的价格C(S_0, 0)上面加上一定的premium,
这样卖option的人才会满意。
(
stocks
at
【在 j*******a 的大作中提到】 : 一个股票有jump,一个没有,有jump的valotilty大,所有option的价格高,这个好理 : 解。 : 有的书用hedge来解释这个:Suppose we short a call option of price C(S_0, 0) ( : the black-scholes option price with no jumps) and hold dC/ds units of stocks : . If a jump does not happen, the hedge works perfectly. The call option : price is a convex function. If we graph the option price as a function of : spot for any time t, any tangent of the graph will lie blow. When a jump : happens, we will move instantly along this tangent line, and hence finish at : a point which is below the Black-Scholes price. We continue to hedge as : before. Hence, if a jump occurs the portfolio value will be less than the
| s********r 发帖数: 529 | 4 嗯,BM说的有道理,而且貌似positive的jump对于对冲的portfolio也是不利的?所以j
ump总的来说会提升期权的价格
0),
【在 l******i 的大作中提到】 : 我胡诌两句: : 就是说在无jump情况下,option价格=用来hedge option的portfolio A价格=C(S_0, 0), : 现在有jump了,portfolio A不能完全hedge了,会亏钱。 : 所以要在portfolio A的价格C(S_0, 0)上面加上一定的premium, : 这样卖option的人才会满意。 : : ( : stocks : at
| l*******1 发帖数: 113 | 5 假设只有downward jump的话 结果也是一样? | s********r 发帖数: 529 | 6 嗯,是的,因为期权是关于股价的凸函数,任何jump都是不利于空头方对冲的
【在 l*******1 的大作中提到】 : 假设只有downward jump的话 结果也是一样?
| l*******1 发帖数: 113 | 7
你确定?
jump是有利对冲的,因为你short一个option。无论是jump up 还是down,你的PnL on
the option是
-delta*(change price),
如果是正常的call, 你的损失是 -[delta*(change in price) + 0.5*gamma*(change
in price)^2]
比起正常的hedge,如果有jump,你的hedge cost 变低了。
seller 在卖option的时候,因为option with jump 让seller delta-hedge时候在
gamma上的损失比较小,所以必须价格比普通call要高。
【在 s********r 的大作中提到】 : 嗯,是的,因为期权是关于股价的凸函数,任何jump都是不利于空头方对冲的
|
|