由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Quant版 - 问个概率问题
相关主题
david li 的模型对这次 次债危机的具体成因?[合集] a probability problem?
A recent interview question from a top bank[合集] 有精通copula的人指点一下么?
请教一个关于copula的问题也问一道题
Generate correlated unifrom random numbers?请问:关于market risk VaR models
一道随机题Recipe for Disaster: The Formula That Killed Wall Street
谁能再帮看看这道题?谢了!请教大家一道面试题
SIG 的一个概率题假如一个变量 X 是 另外几个变量的函数, X=f(Y1, Y2,...,Yn), 假设Y1,。。YN 的分布是知道的,如何得出X的 分布
随机过程问题小测验Clayton Copula
相关话题的讨论汇总
话题: y2话题: rho话题: var话题: cov话题: 12
进入Quant版参与讨论
1 (共1页)
s*****i
发帖数: 93
1
2 independent random variables uniformly distributed in [0,1]. How do you
transform them, so that they stay uniformly distributed in [0,1], but the
correlation between them becomes \rho.
p**********g
发帖数: 9385
2
http://www.wilmott.com/messageview.cfm?catid=26&threadid=61763&FTVAR_MSGDBTABLE=&STARTPAGE=1

【在 s*****i 的大作中提到】
: 2 independent random variables uniformly distributed in [0,1]. How do you
: transform them, so that they stay uniformly distributed in [0,1], but the
: correlation between them becomes \rho.

f***a
发帖数: 329
3
good

catid=26&threadid=61763&FTVAR_MSGDBTABLE=&STARTPAGE=1

【在 p**********g 的大作中提到】
: http://www.wilmott.com/messageview.cfm?catid=26&threadid=61763&FTVAR_MSGDBTABLE=&STARTPAGE=1
m*****n
发帖数: 2152
4
Z = X when X <=\rho
Z = (1-\rho)Y + \rho when X > \rho
(X , Z) is the answer?
b***k
发帖数: 2673
5
Is this a standard problem from heard on the street?
I think I have seen it somewhere, can't recall though.

【在 s*****i 的大作中提到】
: 2 independent random variables uniformly distributed in [0,1]. How do you
: transform them, so that they stay uniformly distributed in [0,1], but the
: correlation between them becomes \rho.

b***k
发帖数: 2673
6
One question on the following solution I copied from wilmott.
let Z be an independant uniform variable
and
Y2 = X if Z< rho
Y2 = Y if Z > rho
Cov(X,Y2) = cov(X,X) * rho
and Y2 is uniform
(X,Y2) is our solution.
对于上面构造的Y2,如何计算E(Y2),Var(Y2),
为什么Cov(X,Y2)=cov(X,X)*rho?
是从公式Cov(X,Y2)=E(X*Y2)-E(X)*E(Y2)得到的吗?我推不出来啊。
m***s
发帖数: 605
7
Y2= X*1(Zrho)

【在 b***k 的大作中提到】
: One question on the following solution I copied from wilmott.
: let Z be an independant uniform variable
: and
: Y2 = X if Z< rho
: Y2 = Y if Z > rho
: Cov(X,Y2) = cov(X,X) * rho
: and Y2 is uniform
: (X,Y2) is our solution.
: 对于上面构造的Y2,如何计算E(Y2),Var(Y2),
: 为什么Cov(X,Y2)=cov(X,X)*rho?

b***k
发帖数: 2673
8
Thanks,miles. From this equation I know
E(Y2)=E(X)*rho + E(Y)*(1-rho),and
Cov(X,Y2)=Cov(X,X)*rho+Cov(X,Y)*(1-rho)=Cov(X,X)*rho
But how to evaluate Var(Y2), since I need to know it because
Corr(X,Y2)=Cov(X,Y2)/[sqrt(Var(X))*sqrt(Var(Y2))]

【在 m***s 的大作中提到】
: Y2= X*1(Zrho)
j*****4
发帖数: 292
9
Y2 is U[0,1] by definition.

【在 b***k 的大作中提到】
: Thanks,miles. From this equation I know
: E(Y2)=E(X)*rho + E(Y)*(1-rho),and
: Cov(X,Y2)=Cov(X,X)*rho+Cov(X,Y)*(1-rho)=Cov(X,X)*rho
: But how to evaluate Var(Y2), since I need to know it because
: Corr(X,Y2)=Cov(X,Y2)/[sqrt(Var(X))*sqrt(Var(Y2))]

j*****4
发帖数: 292
10
more details on the cholesky decomposition method can be found here:
http://comisef.wikidot.com/tutorial:correlateduniformvariates

【在 p**********g 的大作中提到】
: http://www.wilmott.com/messageview.cfm?catid=26&threadid=61763&FTVAR_MSGDBTABLE=&STARTPAGE=1
m***s
发帖数: 605
11
我提供一个硬算的笨办法。
E(y2)=E(E(y2|x,y))=E(rho*x+(1-rho)*y))=1/2
var(y2)=var(E(y2|x,y))+E(var(y2|x,y))
note r=rho
let u=r*x+(1-r)*y, then x-u=(1-r)*(x-y), y-u=r*(y-x)
=var(u)+E(r*[x-u]^2+(1-r)*(y-u)^2)
=[r^2+(1-r)^2]*1/12 +r*E[(x-u)^2]+(1-r)*E[(y-u)^2]
=[r^2+(1-r)^2]*1/12 + r* E[(1-r)^2*(x-y)^2]+(1-r)*E[r^2*(x-y)^2]
=[r^2+(1-r)^2]*1/12 + r*(1-r)*E[(x-y)^2]
=[r^2+(1-r)^2]*1/12 + r*(1-r)*1/6
=1/12

【在 b***k 的大作中提到】
: Thanks,miles. From this equation I know
: E(Y2)=E(X)*rho + E(Y)*(1-rho),and
: Cov(X,Y2)=Cov(X,X)*rho+Cov(X,Y)*(1-rho)=Cov(X,X)*rho
: But how to evaluate Var(Y2), since I need to know it because
: Corr(X,Y2)=Cov(X,Y2)/[sqrt(Var(X))*sqrt(Var(Y2))]

m*****n
发帖数: 2152
12
only 2 sets of random number are available, where could you get Z?

【在 b***k 的大作中提到】
: One question on the following solution I copied from wilmott.
: let Z be an independant uniform variable
: and
: Y2 = X if Z< rho
: Y2 = Y if Z > rho
: Cov(X,Y2) = cov(X,X) * rho
: and Y2 is uniform
: (X,Y2) is our solution.
: 对于上面构造的Y2,如何计算E(Y2),Var(Y2),
: 为什么Cov(X,Y2)=cov(X,X)*rho?

p*****k
发帖数: 318
13
maxthon, there are ways to do it just using two r.v.s.
e.g., set Z=X if Y<(rho+1)/2 and 1-X otherwise,
then take (X,Z);
or use Gaussian copula:
http://www.mitbbs.com/article_t/Quant/31176232.html
b***k
发帖数: 2673
14
你搜索能力总是很强,你这个链接应该就是我上次看到的地方。多谢了。

【在 p*****k 的大作中提到】
: maxthon, there are ways to do it just using two r.v.s.
: e.g., set Z=X if Y<(rho+1)/2 and 1-X otherwise,
: then take (X,Z);
: or use Gaussian copula:
: http://www.mitbbs.com/article_t/Quant/31176232.html

1 (共1页)
进入Quant版参与讨论
相关主题
Clayton Copula一道随机题
help on this problem谁能再帮看看这道题?谢了!
问几个Morgan Stanley的面试题目SIG 的一个概率题
DB interview question随机过程问题小测验
david li 的模型对这次 次债危机的具体成因?[合集] a probability problem?
A recent interview question from a top bank[合集] 有精通copula的人指点一下么?
请教一个关于copula的问题也问一道题
Generate correlated unifrom random numbers?请问:关于market risk VaR models
相关话题的讨论汇总
话题: y2话题: rho话题: var话题: cov话题: 12