由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Statistics版 - 发个有意思的题目
相关主题
问个证明题急!菜鸟问一个统计知识,大家勿打击啊!
请教一道题.How to prove the bound of Chebyshev's inequality can't be i (转载)
EM algorithm: why H(theta,theta‘) maximized at theta'?How to use Theil's U2 inequality
我也来贡献一本书开学咯 问一道linear algebra的题目
有关conditional probability的问题有学Opertation Research的candidates吗?
Please take a look at this大牛指点一下TOBIT MODEL
1/(x^2 * lnx) sum over x from a to infinity 怎么算?在SAS中不用proc sql的情况下实现inequality join
如何用SAS Macro来计算这个公式?小问题让我想半天。。。
相关话题的讨论汇总
话题: ln话题: infinity话题: since话题: inequality话题: jensen
进入Statistics版参与讨论
1 (共1页)
s*****n
发帖数: 2174
1
从本科同学的微信群上看来的, 蛮有意思的一道题
Let X and Y be two positive random variables with identical distribution (
not necessarily independent), prove E(X/Y) >= 1.
e********2
发帖数: 495
2
e(x/y) + e(y/x) >= 2
and
e(x/y) == e(y/x)?

【在 s*****n 的大作中提到】
: 从本科同学的微信群上看来的, 蛮有意思的一道题
: Let X and Y be two positive random variables with identical distribution (
: not necessarily independent), prove E(X/Y) >= 1.

s*****n
发帖数: 2174
3
E(X/Y) 不一定等于 E(Y/X)
反例如下: X, Y有下面的联合分布
P(X=1, Y=2) = 1/3
P(X=2, Y=4) = 1/3
P(X=4, Y=1) = 1/3
X和Y的分布都是(1,2,4)的均匀分布, 但是
P(X/Y=0.5) = 2/3, P(X/Y=4) = 1/3, E(X/Y)=5/3
P(Y/X=2)=2/3, P(Y/X=1/4)=1/3, E(Y/X)=17/12

【在 e********2 的大作中提到】
: e(x/y) + e(y/x) >= 2
: and
: e(x/y) == e(y/x)?

e********2
发帖数: 495
4
Jensen's inequality
E(e^(ln(Y/X)))>=e^(E(ln(Y/X)))=1

【在 s*****n 的大作中提到】
: E(X/Y) 不一定等于 E(Y/X)
: 反例如下: X, Y有下面的联合分布
: P(X=1, Y=2) = 1/3
: P(X=2, Y=4) = 1/3
: P(X=4, Y=1) = 1/3
: X和Y的分布都是(1,2,4)的均匀分布, 但是
: P(X/Y=0.5) = 2/3, P(X/Y=4) = 1/3, E(X/Y)=5/3
: P(Y/X=2)=2/3, P(Y/X=1/4)=1/3, E(Y/X)=17/12

s*****n
发帖数: 2174
5
但是你不等式右边展开的时候有可能出现无穷减无穷的情况。所以这个证明只对E(log(
X)) 和 E(log(Y)) 存在这个情况成立。

【在 e********2 的大作中提到】
: Jensen's inequality
: E(e^(ln(Y/X)))>=e^(E(ln(Y/X)))=1

P****i
发帖数: 1362
6
强,我想到用Jensen's inequality,没想出来这么变换

【在 e********2 的大作中提到】
: Jensen's inequality
: E(e^(ln(Y/X)))>=e^(E(ln(Y/X)))=1

I*****a
发帖数: 5425
7
E(X/Y) = exp( ln ( E(X/Y) ) )
ln( E(X/Y) ) >= E( ln(X/Y) ) = 0
so E(X/Y) >= exp(0) = 1

【在 e********2 的大作中提到】
: Jensen's inequality
: E(e^(ln(Y/X)))>=e^(E(ln(Y/X)))=1

s*****n
发帖数: 2174
8
这个证明和上面有同样的问题
这题的精华在于如何证明一般的情况
X,Y>0

【在 I*****a 的大作中提到】
: E(X/Y) = exp( ln ( E(X/Y) ) )
: ln( E(X/Y) ) >= E( ln(X/Y) ) = 0
: so E(X/Y) >= exp(0) = 1

L****o
发帖数: 1
9
民科’s guess:
Since X>0, E(X) is always defined. Two cases to be considered.
(1)E(X)0, ln(X) is defined and hence Eln(X)<00 because of E(X)<
oo. Then by Jensen inequality, we see that E(X/Y)=Eexp{ln(X/Y)}>=exp{Eln(X/Y
)}=exp{Eln(X)-ElnY}=0, where the last equality is obtained since lnX and LnY
have the same marginal distribution and their first moments are finite.
(2)E(X)=oo. Since X>0, we can always find a large positive integer m such
that E{X^(1/m)}={E[(X/Y)^(1/m)]}^m by
virtue of Lyapunov's Inequality. It remains to establish E[(X/Y)^(1/m)]>=1
. But E[(X/Y)^(1/m)]=E{[X^(1/m)]/[Y^(1/m)]). Then the desired result
follows by using the same procedure in (1) with X^(1/m) and Y^(1/m)
replacing X and Y respectively.

【在 s*****n 的大作中提到】
: 从本科同学的微信群上看来的, 蛮有意思的一道题
: Let X and Y be two positive random variables with identical distribution (
: not necessarily independent), prove E(X/Y) >= 1.

l******t
发帖数: 96
10
in (1) E log(X) could be - infty.

)<
/Y
LnY
by
=1

【在 L****o 的大作中提到】
: 民科’s guess:
: Since X>0, E(X) is always defined. Two cases to be considered.
: (1)E(X)0, ln(X) is defined and hence Eln(X)<00 because of E(X)<
: oo. Then by Jensen inequality, we see that E(X/Y)=Eexp{ln(X/Y)}>=exp{Eln(X/Y
: )}=exp{Eln(X)-ElnY}=0, where the last equality is obtained since lnX and LnY
: have the same marginal distribution and their first moments are finite.
: (2)E(X)=oo. Since X>0, we can always find a large positive integer m such
: that E{X^(1/m)}={E[(X/Y)^(1/m)]}^m by
: virtue of Lyapunov's Inequality. It remains to establish E[(X/Y)^(1/m)]>=1
: . But E[(X/Y)^(1/m)]=E{[X^(1/m)]/[Y^(1/m)]). Then the desired result

相关主题
Please take a look at this急!菜鸟问一个统计知识,大家勿打击啊!
1/(x^2 * lnx) sum over x from a to infinity 怎么算?How to prove the bound of Chebyshev's inequality can't be i (转载)
如何用SAS Macro来计算这个公式?How to use Theil's U2 inequality
进入Statistics版参与讨论
D**u
发帖数: 288
11
let me give a try:
Expectation is basically an integral, when we write E(X/Y), we are assuming
that X/Y is integrable. Then Y should not have continuous density
approaching and at zero, otherwise the integral goes to infinity. And, since
we are told "X and Y be two positive(should be non-negative?) random
variables", then X, Y > 0. And then the Jensen's inequality follows.
l******t
发帖数: 96
12
we are not assuming X/Y is integrable, if it's not, then expectation is
infity, again >= 1.
Thus, Y could have continuous density approaching 0.

assuming
since

【在 D**u 的大作中提到】
: let me give a try:
: Expectation is basically an integral, when we write E(X/Y), we are assuming
: that X/Y is integrable. Then Y should not have continuous density
: approaching and at zero, otherwise the integral goes to infinity. And, since
: we are told "X and Y be two positive(should be non-negative?) random
: variables", then X, Y > 0. And then the Jensen's inequality follows.

D**u
发帖数: 288
13
if the integral is infinity, then it is not well defined, and it does not
exist, and you can't say it is >=1.

【在 l******t 的大作中提到】
: we are not assuming X/Y is integrable, if it's not, then expectation is
: infity, again >= 1.
: Thus, Y could have continuous density approaching 0.
:
: assuming
: since

l******t
发帖数: 96
14
that's usually the case, but if the RV is positive, we could still say that
it's infinity, and of course it's > 1.
The reason we usually ignore infinity is that expectation of both positive
and negative part are infinity, and we could not get an clear answer for
infinity - infinity.

【在 D**u 的大作中提到】
: if the integral is infinity, then it is not well defined, and it does not
: exist, and you can't say it is >=1.

e********2
发帖数: 495
15
你可以把积分区间分成小块,然后两小块,两小块相加。
or
[1/r, r] x [1/r, r]区间积分然后对r->inf取极限。

log(

【在 s*****n 的大作中提到】
: 但是你不等式右边展开的时候有可能出现无穷减无穷的情况。所以这个证明只对E(log(
: X)) 和 E(log(Y)) 存在这个情况成立。

1 (共1页)
进入Statistics版参与讨论
相关主题
小问题让我想半天。。。有关conditional probability的问题
清仓处理教科书 (转载)Please take a look at this
请教这个统计题有这个结论吗?1/(x^2 * lnx) sum over x from a to infinity 怎么算?
清仓处理教科书如何用SAS Macro来计算这个公式?
问个证明题急!菜鸟问一个统计知识,大家勿打击啊!
请教一道题.How to prove the bound of Chebyshev's inequality can't be i (转载)
EM algorithm: why H(theta,theta‘) maximized at theta'?How to use Theil's U2 inequality
我也来贡献一本书开学咯 问一道linear algebra的题目
相关话题的讨论汇总
话题: ln话题: infinity话题: since话题: inequality话题: jensen