由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Quant版 - 【Brownian Motion】一道题求解
相关主题
【Brownian Motion】 面试问题!Matrix question
a question about brownian motion问个随机积分的问题
[合集] 一个弱问题:What does Brownian Motion converge to?Is this true?
local martingale○○○ 求证一个随机积分的收敛性 ○○○
一个题大家帮忙问个random walk的问题
Asymmetric Brownian Motion question discussion请教一道积分题
【问题 Shreve 4.1.19 Brownian Motion】小女子~急求 概率题~~解法~~~
distribution of argmin{ Bt, t in [0, 1] } ?一道面试题
相关话题的讨论汇总
话题: infinity话题: inf话题: tau话题: var话题: lim
进入Quant版参与讨论
1 (共1页)
s*****e
发帖数: 20
1
Let S_0=0 and for n \in N define
T_n = inf { t >= S_{n-1} | B_t >= 1} and S_n = inf{ t>= T_n | B_t <= -1}
Show that P(lim n -> infinity T_n = infinity) = 1
c**********e
发帖数: 2007
2
This is simple. Notice T_n-T_{n-1} is i.i.d. This makes T_n=X1+X2+...+Xn
were Xi's iid.
Since Xi's have mean infinity, we can use Y_i=max(X_i,1). Then apply the law
of big numbers.
C***m
发帖数: 120
3
用LLN需要var有限,借这个帖子,再问一个,
定义 \tau = inf { t >= 0 | B_t >= 1}
求E(\tau)和var(\tau),谢谢。
其实想算这个
\tau = inf { t >= 0 | B_t >= a or B_t <= -b}
的mean 和var. a,b>0
a****h
发帖数: 126
4
what does inf mean?

【在 s*****e 的大作中提到】
: Let S_0=0 and for n \in N define
: T_n = inf { t >= S_{n-1} | B_t >= 1} and S_n = inf{ t>= T_n | B_t <= -1}
: Show that P(lim n -> infinity T_n = infinity) = 1

c**********e
发帖数: 2007
5

For the original question, var(X_i)=infty, but var(max(X_i,1)) So there is no need to worry about it.
Both infinity.
E\tau = ab. I do not remember the var. I'll check it late.

【在 C***m 的大作中提到】
: 用LLN需要var有限,借这个帖子,再问一个,
: 定义 \tau = inf { t >= 0 | B_t >= 1}
: 求E(\tau)和var(\tau),谢谢。
: 其实想算这个
: \tau = inf { t >= 0 | B_t >= a or B_t <= -b}
: 的mean 和var. a,b>0

C***m
发帖数: 120
6
Thank you for your comments. I was trying to see why var(max(X_i,1)) For the var, I was thinking E(W_t^4-3t^2)=0, so maybe E(W_\tau^4-3\tau^2)=0
as well. It seems doesn't work cause this method may lead a negative var...

【在 c**********e 的大作中提到】
:
: For the original question, var(X_i)=infty, but var(max(X_i,1)): So there is no need to worry about it.
: Both infinity.
: E\tau = ab. I do not remember the var. I'll check it late.

c**********e
发帖数: 2007
7

Faint. max(X_i,1)<=1. Of course its var 0
I tried. This one might not have a nice close form solution unless special
case such as a=b or a=2b.

【在 C***m 的大作中提到】
: Thank you for your comments. I was trying to see why var(max(X_i,1)): For the var, I was thinking E(W_t^4-3t^2)=0, so maybe E(W_\tau^4-3\tau^2)=0
: as well. It seems doesn't work cause this method may lead a negative var...

k*****y
发帖数: 744
8
貌似T_1 是第一次到达1的时间;S_1是T_1之后第一次到达-1的时间;T_2是S_1之后第
一次到达1的时间...

【在 a****h 的大作中提到】
: what does inf mean?
r****t
发帖数: 10904
9
其实 T_1 和后来的都不是 iid 的

【在 k*****y 的大作中提到】
: 貌似T_1 是第一次到达1的时间;S_1是T_1之后第一次到达-1的时间;T_2是S_1之后第
: 一次到达1的时间...

c**********e
发帖数: 2007
10
Does it matter?

【在 r****t 的大作中提到】
: 其实 T_1 和后来的都不是 iid 的
相关主题
Asymmetric Brownian Motion question discussionMatrix question
【问题 Shreve 4.1.19 Brownian Motion】问个随机积分的问题
distribution of argmin{ Bt, t in [0, 1] } ?Is this true?
进入Quant版参与讨论
C***m
发帖数: 120
11
看起来对的。
可是,当 a很大(10),b比较小(1) 最后算出来E(\tau^2)<0。
还有这个max(X_i,1)<=1,是笔误吧,还是有什么原因我没看出来。。。

idea

【在 k*****y 的大作中提到】
: 貌似T_1 是第一次到达1的时间;S_1是T_1之后第一次到达-1的时间;T_2是S_1之后第
: 一次到达1的时间...

k*****y
发帖数: 744
12
Thanks for pointing that out. I made a few mistakes before.
Here is the updated version. It looks more symmetric and consistent. Hope I
got it right this time.

【在 C***m 的大作中提到】
: 看起来对的。
: 可是,当 a很大(10),b比较小(1) 最后算出来E(\tau^2)<0。
: 还有这个max(X_i,1)<=1,是笔误吧,还是有什么原因我没看出来。。。
:
: idea

C***m
发帖数: 120
13
厉害,这个应该对了,谢谢。

I

【在 k*****y 的大作中提到】
: Thanks for pointing that out. I made a few mistakes before.
: Here is the updated version. It looks more symmetric and consistent. Hope I
: got it right this time.

c**********e
发帖数: 2007
14
The answer is correct. This is great!

I

【在 k*****y 的大作中提到】
: Thanks for pointing that out. I made a few mistakes before.
: Here is the updated version. It looks more symmetric and consistent. Hope I
: got it right this time.

Q***5
发帖数: 994
15
Here is a more primitive proof:
There exists a>0 such that prob(X_i>a) = b>0
Now, forn any constant D,
Prob(T_n ^(n-[D/a]-1)*b^([D/a]+1) goes to 0 as n goes to infinity

law

【在 c**********e 的大作中提到】
: This is simple. Notice T_n-T_{n-1} is i.i.d. This makes T_n=X1+X2+...+Xn
: were Xi's iid.
: Since Xi's have mean infinity, we can use Y_i=max(X_i,1). Then apply the law
: of big numbers.

c**********e
发帖数: 2007
16
Your idea is good. But your proof is for convergence in probability
while the original problem is to prove convergence a.s..

b)

【在 Q***5 的大作中提到】
: Here is a more primitive proof:
: There exists a>0 such that prob(X_i>a) = b>0
: Now, forn any constant D,
: Prob(T_n: ^(n-[D/a]-1)*b^([D/a]+1) goes to 0 as n goes to infinity
:
: law

Q***5
发帖数: 994
17
Good point, but here convergence is trivial because T_n is monotonically
increasing.
More strictly, assume the conclusion does not hold, then there exists a>0
such that P(lim_n T_n 0
Since T_n is non-decreasing, P(T_N=P(lim_n T_n contradicts the conclusion above.

【在 c**********e 的大作中提到】
: Your idea is good. But your proof is for convergence in probability
: while the original problem is to prove convergence a.s..
:
: b)

c**********e
发帖数: 2007
18
You are right. As Tn-T1 is the sum of some iid positive difference,
convergence in probability implies convergence a.s..


【在 Q***5 的大作中提到】
: Good point, but here convergence is trivial because T_n is monotonically
: increasing.
: More strictly, assume the conclusion does not hold, then there exists a>0
: such that P(lim_n T_n 0
: Since T_n is non-decreasing, P(T_N=P(lim_n T_n : contradicts the conclusion above.

s*****e
发帖数: 20
19
Let S_0=0 and for n \in N define
T_n = inf { t >= S_{n-1} | B_t >= 1} and S_n = inf{ t>= T_n | B_t <= -1}
Show that P(lim n -> infinity T_n = infinity) = 1
c**********e
发帖数: 2007
20
This is simple. Notice T_n-T_{n-1} is i.i.d. This makes T_n=X1+X2+...+Xn
were Xi's iid.
Since Xi's have mean infinity, we can use Y_i=max(X_i,1). Then apply the law
of big numbers.
相关主题
○○○ 求证一个随机积分的收敛性 ○○○小女子~急求 概率题~~解法~~~
问个random walk的问题一道面试题
请教一道积分题发几道今天的海选考试题
进入Quant版参与讨论
C***m
发帖数: 120
21
用LLN需要var有限,借这个帖子,再问一个,
定义 \tau = inf { t >= 0 | B_t >= 1}
求E(\tau)和var(\tau),谢谢。
其实想算这个
\tau = inf { t >= 0 | B_t >= a or B_t <= -b}
的mean 和var. a,b>0
a****h
发帖数: 126
22
what does inf mean?

【在 s*****e 的大作中提到】
: Let S_0=0 and for n \in N define
: T_n = inf { t >= S_{n-1} | B_t >= 1} and S_n = inf{ t>= T_n | B_t <= -1}
: Show that P(lim n -> infinity T_n = infinity) = 1

c**********e
发帖数: 2007
23

For the original question, var(X_i)=infty, but var(max(X_i,1)) So there is no need to worry about it.
Both infinity.
E\tau = ab. I do not remember the var. I'll check it late.

【在 C***m 的大作中提到】
: 用LLN需要var有限,借这个帖子,再问一个,
: 定义 \tau = inf { t >= 0 | B_t >= 1}
: 求E(\tau)和var(\tau),谢谢。
: 其实想算这个
: \tau = inf { t >= 0 | B_t >= a or B_t <= -b}
: 的mean 和var. a,b>0

C***m
发帖数: 120
24
Thank you for your comments. I was trying to see why var(max(X_i,1)) For the var, I was thinking E(W_t^4-3t^2)=0, so maybe E(W_\tau^4-3\tau^2)=0
as well. It seems doesn't work cause this method may lead a negative var...

【在 c**********e 的大作中提到】
:
: For the original question, var(X_i)=infty, but var(max(X_i,1)): So there is no need to worry about it.
: Both infinity.
: E\tau = ab. I do not remember the var. I'll check it late.

c**********e
发帖数: 2007
25

Faint. max(X_i,1)<=1. Of course its var 0
I tried. This one might not have a nice close form solution unless special
case such as a=b or a=2b.

【在 C***m 的大作中提到】
: Thank you for your comments. I was trying to see why var(max(X_i,1)): For the var, I was thinking E(W_t^4-3t^2)=0, so maybe E(W_\tau^4-3\tau^2)=0
: as well. It seems doesn't work cause this method may lead a negative var...

k*****y
发帖数: 744
26
貌似T_1 是第一次到达1的时间;S_1是T_1之后第一次到达-1的时间;T_2是S_1之后第
一次到达1的时间...

【在 a****h 的大作中提到】
: what does inf mean?
r****t
发帖数: 10904
27
其实 T_1 和后来的都不是 iid 的

【在 k*****y 的大作中提到】
: 貌似T_1 是第一次到达1的时间;S_1是T_1之后第一次到达-1的时间;T_2是S_1之后第
: 一次到达1的时间...

c**********e
发帖数: 2007
28
Does it matter?

【在 r****t 的大作中提到】
: 其实 T_1 和后来的都不是 iid 的
C***m
发帖数: 120
29
看起来对的。
可是,当 a很大(10),b比较小(1) 最后算出来E(\tau^2)<0。
还有这个max(X_i,1)<=1,是笔误吧,还是有什么原因我没看出来。。。

idea

【在 k*****y 的大作中提到】
: 貌似T_1 是第一次到达1的时间;S_1是T_1之后第一次到达-1的时间;T_2是S_1之后第
: 一次到达1的时间...

k*****y
发帖数: 744
30
Thanks for pointing that out. I made a few mistakes before.
Here is the updated version. It looks more symmetric and consistent. Hope I
got it right this time.

【在 C***m 的大作中提到】
: 看起来对的。
: 可是,当 a很大(10),b比较小(1) 最后算出来E(\tau^2)<0。
: 还有这个max(X_i,1)<=1,是笔误吧,还是有什么原因我没看出来。。。
:
: idea

相关主题
问一个Shreve V2上的问题a question about brownian motion
问个老题 E(sin Wt)[合集] 一个弱问题:What does Brownian Motion converge to?
【Brownian Motion】 面试问题!local martingale
进入Quant版参与讨论
C***m
发帖数: 120
31
厉害,这个应该对了,谢谢。

I

【在 k*****y 的大作中提到】
: Thanks for pointing that out. I made a few mistakes before.
: Here is the updated version. It looks more symmetric and consistent. Hope I
: got it right this time.

c**********e
发帖数: 2007
32
The answer is correct. This is great!

I

【在 k*****y 的大作中提到】
: Thanks for pointing that out. I made a few mistakes before.
: Here is the updated version. It looks more symmetric and consistent. Hope I
: got it right this time.

Q***5
发帖数: 994
33
Here is a more primitive proof:
There exists a>0 such that prob(X_i>a) = b>0
Now, forn any constant D,
Prob(T_n ^(n-[D/a]-1)*b^([D/a]+1) goes to 0 as n goes to infinity

law

【在 c**********e 的大作中提到】
: This is simple. Notice T_n-T_{n-1} is i.i.d. This makes T_n=X1+X2+...+Xn
: were Xi's iid.
: Since Xi's have mean infinity, we can use Y_i=max(X_i,1). Then apply the law
: of big numbers.

c**********e
发帖数: 2007
34
Your idea is good. But your proof is for convergence in probability
while the original problem is to prove convergence a.s..

b)

【在 Q***5 的大作中提到】
: Here is a more primitive proof:
: There exists a>0 such that prob(X_i>a) = b>0
: Now, forn any constant D,
: Prob(T_n: ^(n-[D/a]-1)*b^([D/a]+1) goes to 0 as n goes to infinity
:
: law

Q***5
发帖数: 994
35
Good point, but here convergence is trivial because T_n is monotonically
increasing.
More strictly, assume the conclusion does not hold, then there exists a>0
such that P(lim_n T_n 0
Since T_n is non-decreasing, P(T_N=P(lim_n T_n contradicts the conclusion above.

【在 c**********e 的大作中提到】
: Your idea is good. But your proof is for convergence in probability
: while the original problem is to prove convergence a.s..
:
: b)

c**********e
发帖数: 2007
36
You are right. As Tn-T1 is the sum of some iid positive difference,
convergence in probability implies convergence a.s..


【在 Q***5 的大作中提到】
: Good point, but here convergence is trivial because T_n is monotonically
: increasing.
: More strictly, assume the conclusion does not hold, then there exists a>0
: such that P(lim_n T_n 0
: Since T_n is non-decreasing, P(T_N=P(lim_n T_n : contradicts the conclusion above.

m******2
发帖数: 564
37
请问各位大牛都是看了什么书有了这么强的理解?
1 (共1页)
进入Quant版参与讨论
相关主题
一道面试题一个题大家帮忙
发几道今天的海选考试题Asymmetric Brownian Motion question discussion
问一个Shreve V2上的问题【问题 Shreve 4.1.19 Brownian Motion】
问个老题 E(sin Wt)distribution of argmin{ Bt, t in [0, 1] } ?
【Brownian Motion】 面试问题!Matrix question
a question about brownian motion问个随机积分的问题
[合集] 一个弱问题:What does Brownian Motion converge to?Is this true?
local martingale○○○ 求证一个随机积分的收敛性 ○○○
相关话题的讨论汇总
话题: infinity话题: inf话题: tau话题: var话题: lim