由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Quant版 - 这个process叫什么名字(stochastic)
相关主题
local martingale一道题
面试题+website collecting interview problems. a very good one, imo.出个好玩的题吧
[合集] 请问Martingale和Markov属性之间的联系和区别?问个随机积分的问题
问个掷骰子的概率问题 (转载)菜鸟问一个积分
martingale question发几道今天的海选考试题
brownian motion, got an answer but do not feel confident. Htoday's interview
一个 interatedBM 问题get confused. anyone help me
小女子~急求 概率题~~解法~~~问一个Shreve V2上的问题
相关话题的讨论汇总
话题: stochastic话题: int话题: process话题: ds话题: satisfies
进入Quant版参与讨论
1 (共1页)
y*******g
发帖数: 968
1
Y_t=exp(int_0^t(T_s d W_s)-1/2 int_0^t (T_s)^2 ds)
c*******e
发帖数: 150
2
note that the process Y_t satisfies dY_t = T_t Y_t dW_t
it is called the stochastic exponential of (T_t)_{t\in[0,T]}, sometimes
denoted as \epsilon(T)_t
If (T_t)_{t\in[0,T]} satisfies the Novikov condition, i.e.
\mathbb{E}[exp(1/2 \int_0^T T_s^2 ds)] < +\infty
then Y_t is also called an exponential martingale, since it is a true
martingale on [0, T]

【在 y*******g 的大作中提到】
: Y_t=exp(int_0^t(T_s d W_s)-1/2 int_0^t (T_s)^2 ds)
c*******e
发帖数: 150
3
in finance and trading, we always have an expiration date for our contract,
so I turned lazy and just listed the situation for a compact time horizon.
You can extend the notions to the case of an infinite time horizon as well,
though not particularly interesting in finance applications.

have
higher

【在 c*******e 的大作中提到】
: note that the process Y_t satisfies dY_t = T_t Y_t dW_t
: it is called the stochastic exponential of (T_t)_{t\in[0,T]}, sometimes
: denoted as \epsilon(T)_t
: If (T_t)_{t\in[0,T]} satisfies the Novikov condition, i.e.
: \mathbb{E}[exp(1/2 \int_0^T T_s^2 ds)] < +\infty
: then Y_t is also called an exponential martingale, since it is a true
: martingale on [0, T]

y*******g
发帖数: 968
4
thank you very much

【在 c*******e 的大作中提到】
: note that the process Y_t satisfies dY_t = T_t Y_t dW_t
: it is called the stochastic exponential of (T_t)_{t\in[0,T]}, sometimes
: denoted as \epsilon(T)_t
: If (T_t)_{t\in[0,T]} satisfies the Novikov condition, i.e.
: \mathbb{E}[exp(1/2 \int_0^T T_s^2 ds)] < +\infty
: then Y_t is also called an exponential martingale, since it is a true
: martingale on [0, T]

1 (共1页)
进入Quant版参与讨论
相关主题
问一个Shreve V2上的问题martingale question
怎么说明两边有吸收壁的布朗运动的停止时间的期望有限?brownian motion, got an answer but do not feel confident. H
一道题一个 interatedBM 问题
请教fair coin一道题小女子~急求 概率题~~解法~~~
local martingale一道题
面试题+website collecting interview problems. a very good one, imo.出个好玩的题吧
[合集] 请问Martingale和Markov属性之间的联系和区别?问个随机积分的问题
问个掷骰子的概率问题 (转载)菜鸟问一个积分
相关话题的讨论汇总
话题: stochastic话题: int话题: process话题: ds话题: satisfies