由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Mathematics版 - Compact riem manifolds and lower bounds on ricci??
相关主题
请问一个Manifold和Curvature的问题原来丘成桐在30年前就已经发现了老张。
graph embedding into manifold?[转贴]庞加莱猜想-Free at last?
一个牛人学数甘苦谈
是谁发了一共3篇文章就得了菲尔兹奖?who understands Perelman's work?
近十年JAMS华人作者统计(除tao之外) 问问大家今年找工作的情况
Jacobi's last theorem is provedChristodoulou and Hamilton Receive 2011 Shaw Prize
Shortest geodesic on 3-sphereRe: 看来重大突破也说不上 (转载)
请教manifold:)Re: 破解世界难题的游戏规则就是:谁破解谁就是大师! (转载)
相关话题的讨论汇总
话题: compact话题: riem话题: ricci话题: geodesic话题: manifolds
进入Mathematics版参与讨论
1 (共1页)
F**S
发帖数: 13
1
A question perhaps utterly elementary to riem geometers:
Let M be a compact riemannian manifold and K a geodesic vector field thereon
. How to see that the ricci curvature function Ric(K, K) must be bounded
below everywhere on M by a strictly positive constant? M being compact
should be necessary but does K really have to be geodesic?
Any feedback would be greatly appreciated!
1 (共1页)
进入Mathematics版参与讨论
相关主题
Re: 破解世界难题的游戏规则就是:谁破解谁就是大师! (转载)近十年JAMS华人作者统计(除tao之外)
zhang 和tao的论文都有56页Jacobi's last theorem is proved
丘对田的帮助和丘与陈的关系Shortest geodesic on 3-sphere
田刚和佩鲁格曼关系不错?请教manifold:)
请问一个Manifold和Curvature的问题原来丘成桐在30年前就已经发现了老张。
graph embedding into manifold?[转贴]庞加莱猜想-Free at last?
一个牛人学数甘苦谈
是谁发了一共3篇文章就得了菲尔兹奖?who understands Perelman's work?
相关话题的讨论汇总
话题: compact话题: riem话题: ricci话题: geodesic话题: manifolds