a*********3 发帖数: 660 | 1 多谢!
y"+y-y^3=0. Find the set of initial condition y(0),y'(0)for which y(t)has
nonconstant periodic solutions |
f*****e 发帖数: 2992 | 2 Laplace or 傅里叶变换求根,根是纯虚数。
【在 a*********3 的大作中提到】 : 多谢! : y"+y-y^3=0. Find the set of initial condition y(0),y'(0)for which y(t)has : nonconstant periodic solutions
|
f*c 发帖数: 687 | 3 Let q=y', then q'=y^3-y. Work on the y-q plane.
Observe that any level curves of
F(y, q)=0.5 q^2 - 0.25(y^2-1)^2
is a solution to your ODE. Most such curves are regular. The
separatrix are the parabolas
q=(y^2-1)/(\sqrt 2) and q=-(y^2-1)/(\sqrt 2).
You can check that if you start at any point inside the domain
bounded by these two curves, i.e.
-(y^2-1)/(\sqrt 2)< q <(y^2-1)/(\sqrt 2) with -1
you get periodic solutions. Exclude (0, 0) if you don't want constant
solution.
|
R******o 发帖数: 1572 | 4 dont think laplace works
do u know how to transform y^3 ?
【在 f*****e 的大作中提到】 : Laplace or 傅里叶变换求根,根是纯虚数。
|
s*****e 发帖数: 115 | 5 找首次积分,观察相空间结构,基本上是这类问题的标准方法。
看来楼主得加紧复习了!
【在 f*c 的大作中提到】 : Let q=y', then q'=y^3-y. Work on the y-q plane. : Observe that any level curves of : F(y, q)=0.5 q^2 - 0.25(y^2-1)^2 : is a solution to your ODE. Most such curves are regular. The : separatrix are the parabolas : q=(y^2-1)/(\sqrt 2) and q=-(y^2-1)/(\sqrt 2). : You can check that if you start at any point inside the domain : bounded by these two curves, i.e. : -(y^2-1)/(\sqrt 2)< q <(y^2-1)/(\sqrt 2) with -1: you get periodic solutions. Exclude (0, 0) if you don't want constant
|
f*****e 发帖数: 2992 | 6 确实,这个是非线性的。;-(
【在 R******o 的大作中提到】 : dont think laplace works : do u know how to transform y^3 ?
|