l*****e 发帖数: 65 | 1 若x_1, ..., x_n 及 y_1, ..., y_n 为正整数, x_1*...*x_n=y_1*...*y_n 且
x_1^2+...+x_n^2=y_1^2+...+y_n^2, 是否作为集合,
{x_1,...,x_n} = {y_1,...,y_n} ???
请高人指点, 多谢啦。 | B****n 发帖数: 11290 | 2 How can 2n variables be determined by two equations?
【在 l*****e 的大作中提到】 : 若x_1, ..., x_n 及 y_1, ..., y_n 为正整数, x_1*...*x_n=y_1*...*y_n 且 : x_1^2+...+x_n^2=y_1^2+...+y_n^2, 是否作为集合, : {x_1,...,x_n} = {y_1,...,y_n} ??? : 请高人指点, 多谢啦。
| N***m 发帖数: 4460 | 3 反例太多啦,比如
1,10,12;
2,4,15
【在 l*****e 的大作中提到】 : 若x_1, ..., x_n 及 y_1, ..., y_n 为正整数, x_1*...*x_n=y_1*...*y_n 且 : x_1^2+...+x_n^2=y_1^2+...+y_n^2, 是否作为集合, : {x_1,...,x_n} = {y_1,...,y_n} ??? : 请高人指点, 多谢啦。
| l*****e 发帖数: 65 | 4 This is a great example.
The case of n=2 is true, then I rush for larger n and hope the restriction
of natural numbers will play a key role. Too Simple Sometimes Too Naive.
Thank you so very much.
【在 N***m 的大作中提到】 : 反例太多啦,比如 : 1,10,12; : 2,4,15
| j****y 发帖数: 335 | 5 n=2时候true,因为两个方程可以确定两个未知数,
您老有点儿太naive了,
【在 l*****e 的大作中提到】 : This is a great example. : The case of n=2 is true, then I rush for larger n and hope the restriction : of natural numbers will play a key role. Too Simple Sometimes Too Naive. : Thank you so very much.
| l*****e 发帖数: 65 | 6 若x_1, ..., x_n 及 y_1, ..., y_n 为正整数, x_1*...*x_n=y_1*...*y_n 且
x_1^2+...+x_n^2=y_1^2+...+y_n^2, 是否作为集合,
{x_1,...,x_n} = {y_1,...,y_n} ???
请高人指点, 多谢啦。 | B****n 发帖数: 11290 | 7 How can 2n variables be determined by two equations?
【在 l*****e 的大作中提到】 : 若x_1, ..., x_n 及 y_1, ..., y_n 为正整数, x_1*...*x_n=y_1*...*y_n 且 : x_1^2+...+x_n^2=y_1^2+...+y_n^2, 是否作为集合, : {x_1,...,x_n} = {y_1,...,y_n} ??? : 请高人指点, 多谢啦。
| N***m 发帖数: 4460 | 8 反例太多啦,比如
1,10,12;
2,4,15
【在 l*****e 的大作中提到】 : 若x_1, ..., x_n 及 y_1, ..., y_n 为正整数, x_1*...*x_n=y_1*...*y_n 且 : x_1^2+...+x_n^2=y_1^2+...+y_n^2, 是否作为集合, : {x_1,...,x_n} = {y_1,...,y_n} ??? : 请高人指点, 多谢啦。
| l*****e 发帖数: 65 | 9 This is a great example.
The case of n=2 is true, then I rush for larger n and hope the restriction
of natural numbers will play a key role. Too Simple Sometimes Too Naive.
Thank you so very much.
【在 N***m 的大作中提到】 : 反例太多啦,比如 : 1,10,12; : 2,4,15
| j****y 发帖数: 335 | 10 n=2时候true,因为两个方程可以确定两个未知数,
您老有点儿太naive了,
【在 l*****e 的大作中提到】 : This is a great example. : The case of n=2 is true, then I rush for larger n and hope the restriction : of natural numbers will play a key role. Too Simple Sometimes Too Naive. : Thank you so very much.
| l*3 发帖数: 2279 | 11 It might be true because the variables are integers.
Though we have counter-examples here, it doesn't mean that your reason for
this is convincing.
【在 B****n 的大作中提到】 : How can 2n variables be determined by two equations?
|
|