由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Mathematics版 - 问一个数学问题
相关主题
繼續問Borel set問題请教一题概率的习题
包子问个概率/泛函题那本教科书讲到one-sided Chebyshev inequality (also known as Cantelli’s inequality)
Help needed! Infinite monkey theorem请教两个拓扑学的问题
解高次方程组3元3次请教大牛们一个问题~~
两个概率论问题文献求助
问个矢量空间的问题请教一道题:y'^2+2siny+cosy+1=0
lnlnt 的upper bound求助三角函数
怎么证明: Asymptotically SUM i*Pr(i) is bounded by O(n^a)Independence of RVs X and f(X)?
相关话题的讨论汇总
话题: infty话题: geq话题: since话题: let
进入Mathematics版参与讨论
1 (共1页)
z****e
发帖数: 702
1
有一个kernel funcition,值域在[0,1]之间。
K(x*,x_k), 其中x*为定点,x_k是从概率分布f(x)中独立同分布draw出来的。
{x_k}从1到无穷。
这样将无穷个x_k点对应的K(x*,x_k)记做矢量K.
问:若使矢量K在L1和L2空间内,那么kernel function K和概率f应分别满足什么条件?
呼唤大牛,有包子酬谢。
a***s
发帖数: 616
2
This seems impossible except some degenerated cases.
Let $Y_k := K(x^*, X_k)$. Since $\{X_k\}_{k \geq 1}$ are i.i.d., $\{Y_k\}_{k
\geq 1}$ are also i.i.d. Since the value of the kernal is between 0 and 1,
$Y_k$'s are nonnegative. Then Borel-Cantelli lemma says $\sum_{k=1}^{\infty}
Y_k = \infty$ with probability one unless $Y_k = 0$ with probability one.
Therefore for the infinite sequence $K$ to be in $l^1$ with positive probabi
lity (one, actually), we must have $Y_k = 0$ with probability one. This mean
s the range of $X_k$ is not in the support of $K$.

件?

【在 z****e 的大作中提到】
: 有一个kernel funcition,值域在[0,1]之间。
: K(x*,x_k), 其中x*为定点,x_k是从概率分布f(x)中独立同分布draw出来的。
: {x_k}从1到无穷。
: 这样将无穷个x_k点对应的K(x*,x_k)记做矢量K.
: 问:若使矢量K在L1和L2空间内,那么kernel function K和概率f应分别满足什么条件?
: 呼唤大牛,有包子酬谢。

z****e
发帖数: 702
3
用borel-cantelli引理,似乎证明的是事件概率的和吧,
此处是随机变量的和。

{k
,
infty}
probabi
mean

【在 a***s 的大作中提到】
: This seems impossible except some degenerated cases.
: Let $Y_k := K(x^*, X_k)$. Since $\{X_k\}_{k \geq 1}$ are i.i.d., $\{Y_k\}_{k
: \geq 1}$ are also i.i.d. Since the value of the kernal is between 0 and 1,
: $Y_k$'s are nonnegative. Then Borel-Cantelli lemma says $\sum_{k=1}^{\infty}
: Y_k = \infty$ with probability one unless $Y_k = 0$ with probability one.
: Therefore for the infinite sequence $K$ to be in $l^1$ with positive probabi
: lity (one, actually), we must have $Y_k = 0$ with probability one. This mean
: s the range of $X_k$ is not in the support of $K$.
:
: 件?

a***s
发帖数: 616
4
Let $\{ X_k \}_{k \geq 1}$ be i.i.d. random variables such that they are non
negative and $\Pr( X_1 > 0 ) > 0$.
In particular, we can assume $\Pr( X_1 > c ) = \delta > 0$ with some nonrand
om positive constants $c$ and $\delta$.
Now B-C lemma tells us that with probability one, events $\{ X_k > c \}$ hap
pens infinitely many times. Thus with probability one, $\sum_{k=1}^{\infty}
X_k = \infty$.

【在 z****e 的大作中提到】
: 用borel-cantelli引理,似乎证明的是事件概率的和吧,
: 此处是随机变量的和。
:
: {k
: ,
: infty}
: probabi
: mean

z****e
发帖数: 702
5
en, 你这个是对的。

non
nonrand
hap
}

【在 a***s 的大作中提到】
: Let $\{ X_k \}_{k \geq 1}$ be i.i.d. random variables such that they are non
: negative and $\Pr( X_1 > 0 ) > 0$.
: In particular, we can assume $\Pr( X_1 > c ) = \delta > 0$ with some nonrand
: om positive constants $c$ and $\delta$.
: Now B-C lemma tells us that with probability one, events $\{ X_k > c \}$ hap
: pens infinitely many times. Thus with probability one, $\sum_{k=1}^{\infty}
: X_k = \infty$.

1 (共1页)
进入Mathematics版参与讨论
相关主题
Independence of RVs X and f(X)?两个概率论问题
百字推翻五千年数学“常识”:无最小正数问个矢量空间的问题
unidentified_titlelnlnt 的upper bound
请教关于borel set的一个问题怎么证明: Asymptotically SUM i*Pr(i) is bounded by O(n^a)
繼續問Borel set問題请教一题概率的习题
包子问个概率/泛函题那本教科书讲到one-sided Chebyshev inequality (also known as Cantelli’s inequality)
Help needed! Infinite monkey theorem请教两个拓扑学的问题
解高次方程组3元3次请教大牛们一个问题~~
相关话题的讨论汇总
话题: infty话题: geq话题: since话题: let