z****e 发帖数: 702 | 1 有一个kernel funcition,值域在[0,1]之间。
K(x*,x_k), 其中x*为定点,x_k是从概率分布f(x)中独立同分布draw出来的。
{x_k}从1到无穷。
这样将无穷个x_k点对应的K(x*,x_k)记做矢量K.
问:若使矢量K在L1和L2空间内,那么kernel function K和概率f应分别满足什么条件?
呼唤大牛,有包子酬谢。 | a***s 发帖数: 616 | 2 This seems impossible except some degenerated cases.
Let $Y_k := K(x^*, X_k)$. Since $\{X_k\}_{k \geq 1}$ are i.i.d., $\{Y_k\}_{k
\geq 1}$ are also i.i.d. Since the value of the kernal is between 0 and 1,
$Y_k$'s are nonnegative. Then Borel-Cantelli lemma says $\sum_{k=1}^{\infty}
Y_k = \infty$ with probability one unless $Y_k = 0$ with probability one.
Therefore for the infinite sequence $K$ to be in $l^1$ with positive probabi
lity (one, actually), we must have $Y_k = 0$ with probability one. This mean
s the range of $X_k$ is not in the support of $K$.
件?
【在 z****e 的大作中提到】 : 有一个kernel funcition,值域在[0,1]之间。 : K(x*,x_k), 其中x*为定点,x_k是从概率分布f(x)中独立同分布draw出来的。 : {x_k}从1到无穷。 : 这样将无穷个x_k点对应的K(x*,x_k)记做矢量K. : 问:若使矢量K在L1和L2空间内,那么kernel function K和概率f应分别满足什么条件? : 呼唤大牛,有包子酬谢。
| z****e 发帖数: 702 | 3 用borel-cantelli引理,似乎证明的是事件概率的和吧,
此处是随机变量的和。
{k
,
infty}
probabi
mean
【在 a***s 的大作中提到】 : This seems impossible except some degenerated cases. : Let $Y_k := K(x^*, X_k)$. Since $\{X_k\}_{k \geq 1}$ are i.i.d., $\{Y_k\}_{k : \geq 1}$ are also i.i.d. Since the value of the kernal is between 0 and 1, : $Y_k$'s are nonnegative. Then Borel-Cantelli lemma says $\sum_{k=1}^{\infty} : Y_k = \infty$ with probability one unless $Y_k = 0$ with probability one. : Therefore for the infinite sequence $K$ to be in $l^1$ with positive probabi : lity (one, actually), we must have $Y_k = 0$ with probability one. This mean : s the range of $X_k$ is not in the support of $K$. : : 件?
| a***s 发帖数: 616 | 4 Let $\{ X_k \}_{k \geq 1}$ be i.i.d. random variables such that they are non
negative and $\Pr( X_1 > 0 ) > 0$.
In particular, we can assume $\Pr( X_1 > c ) = \delta > 0$ with some nonrand
om positive constants $c$ and $\delta$.
Now B-C lemma tells us that with probability one, events $\{ X_k > c \}$ hap
pens infinitely many times. Thus with probability one, $\sum_{k=1}^{\infty}
X_k = \infty$.
【在 z****e 的大作中提到】 : 用borel-cantelli引理,似乎证明的是事件概率的和吧, : 此处是随机变量的和。 : : {k : , : infty} : probabi : mean
| z****e 发帖数: 702 | 5 en, 你这个是对的。
non
nonrand
hap
}
【在 a***s 的大作中提到】 : Let $\{ X_k \}_{k \geq 1}$ be i.i.d. random variables such that they are non : negative and $\Pr( X_1 > 0 ) > 0$. : In particular, we can assume $\Pr( X_1 > c ) = \delta > 0$ with some nonrand : om positive constants $c$ and $\delta$. : Now B-C lemma tells us that with probability one, events $\{ X_k > c \}$ hap : pens infinitely many times. Thus with probability one, $\sum_{k=1}^{\infty} : X_k = \infty$.
|
|