n*s 发帖数: 752 | 1 we know
x t
lim (1+t/x) = e
x->oo
my question is: if t is not a number, but a matrix, does this equation still
hold?
thx very much! |
r******n 发帖数: 149 | 2 yes
still
【在 n*s 的大作中提到】 : we know : x t : lim (1+t/x) = e : x->oo : my question is: if t is not a number, but a matrix, does this equation still : hold? : thx very much!
|
d******e 发帖数: 7844 | 3 matrix^matrix?什么概念?
still
【在 n*s 的大作中提到】 : we know : x t : lim (1+t/x) = e : x->oo : my question is: if t is not a number, but a matrix, does this equation still : hold? : thx very much!
|
r******n 发帖数: 149 | 4 他说的是 number^ matrix
吧
【在 d******e 的大作中提到】 : matrix^matrix?什么概念? : : still
|
d******e 发帖数: 7844 | 5 t is a matrix then,I-t/x is a matrix.
xt is another matrix
So we get matrix^matrix
【在 r******n 的大作中提到】 : 他说的是 number^ matrix : 吧
|
r******n 发帖数: 149 | 6 just x
not xt
呵呵
【在 d******e 的大作中提到】 : t is a matrix then,I-t/x is a matrix. : xt is another matrix : So we get matrix^matrix
|
d******e 发帖数: 7844 | 7 o I see.
t t
Then matrix^infinity = e or I*e
【在 r******n 的大作中提到】 : just x : not xt : 呵呵
|
r******n 发帖数: 149 | 8 I*e^t =e^t if t is a matrix
heeh
【在 d******e 的大作中提到】 : o I see. : t t : Then matrix^infinity = e or I*e
|
d******e 发帖数: 7844 | 9 *_*.
不好意思看错了。
【在 r******n 的大作中提到】 : I*e^t =e^t if t is a matrix : heeh
|
c*******h 发帖数: 1096 | 10 你有我们班的微积分教材么?
照着证明 lim (1+1/n)^n = sum 1/n!
的思路证明 lim (1+t/x)^x = sum t^x/x!
其中涉及到不等号的地方都是矩阵element-wise的就行了
这样可以证明对于t的元素都是正的情况是成立的
至于其他情况,应该有什么trick可以试一下。。
still
【在 n*s 的大作中提到】 : we know : x t : lim (1+t/x) = e : x->oo : my question is: if t is not a number, but a matrix, does this equation still : hold? : thx very much!
|
c*******h 发帖数: 1096 | 11
any matrix A has finite spectrum, so the partial sum always converges.
i don't see why the conclusion that the two are equivalent is OBVIOUS. |
R*********r 发帖数: 1855 | 12 x取整数才行,否则你必须想法定义矩阵的任意实数幂。 |