s*******y 发帖数: 558 | 1 我重新把问题说明白一遍吧。
我的问题可以这么说:
I was just wondering if the following claim is true or not:
Any square random matrix with entries independently chosen from
continuous distribution is of full rank.
为此我得到了几个解释。 但是太笨叻, 看不太明白人家的阐述。
发在下面大家评论一下。
我得到的第一个解释是:
Yes, except for a set of measure zero. Equivalently... yes, with
probability 1. Random square matrices span NxN-dimensional Euclidean space.
The inverse image of zero under the determinant function is only a
1-dimensional submanifold.
第二个解释:
The above ex |
|