a*****k 发帖数: 704 | 1 【 以下文字转载自 Quant 讨论区 】
发信人: artwork (嘿嘿), 信区: Quant
标 题: how to show this
发信站: BBS 未名空间站 (Sun Jul 1 16:00:46 2007), 转信
lim_{\beta -> \infty} \sup_{0 \leq t\leq T}|\exp(-\beta t) \int^t_0 \exp(\
beta s)dW_s| = 0, a.s.
anybody has any idea? |
l****e 发帖数: 23 | 2 BDG inequality?
【在 a*****k 的大作中提到】 : 【 以下文字转载自 Quant 讨论区 】 : 发信人: artwork (嘿嘿), 信区: Quant : 标 题: how to show this : 发信站: BBS 未名空间站 (Sun Jul 1 16:00:46 2007), 转信 : lim_{\beta -> \infty} \sup_{0 \leq t\leq T}|\exp(-\beta t) \int^t_0 \exp(\ : beta s)dW_s| = 0, a.s. : anybody has any idea?
|
a*****k 发帖数: 704 | 3 maybe it's true.But the things inside of the sup is not a martingle,
so I don't how to apply it...
could you elaborate?
【在 l****e 的大作中提到】 : BDG inequality?
|
l****e 发帖数: 23 | 4 Maybe BDG doesn't work. But I made it in a way similar to the proof of BDG:
Let M_{t}:=\int_{0}^{t}\exp{\beta s-t}dW_{s}.
Apply Ito Formula to |M_{t}|^{2} and integrate from 0 to T, we get
|M_{T}|^{2}=T-2\beta\int_{0}^{T}|M_{t}|^{2}dt+\int_{0}^{T}2M_{t}dW_{t}.
Then taking expectation gives
E|M_{T}|^{2}=T-2\beta E\int_{0}^{T}|M_{t}|^{2}dt
\geq T-2\beta TE\sup_{0\leq t\leq T}|M_{t}|^{2}.
That is
E\sup_{0\leq t\leq T}|M_{t}|^{2}
\leq (T-E|M_{T}|^{2})/(2\beta T)
=1/(2\beta)-(1-\exp{-2\beta T})/(4\be
【在 a*****k 的大作中提到】 : maybe it's true.But the things inside of the sup is not a martingle, : so I don't how to apply it... : could you elaborate?
|
a*****k 发帖数: 704 | 5 all the first several lines are right.
after "that is", when you move E\sup to the other side,
the inequality should be reversed.
That's where I think wrong.
correct me if I am wrong
【在 l****e 的大作中提到】 : Maybe BDG doesn't work. But I made it in a way similar to the proof of BDG: : Let M_{t}:=\int_{0}^{t}\exp{\beta s-t}dW_{s}. : Apply Ito Formula to |M_{t}|^{2} and integrate from 0 to T, we get : |M_{T}|^{2}=T-2\beta\int_{0}^{T}|M_{t}|^{2}dt+\int_{0}^{T}2M_{t}dW_{t}. : Then taking expectation gives : E|M_{T}|^{2}=T-2\beta E\int_{0}^{T}|M_{t}|^{2}dt : \geq T-2\beta TE\sup_{0\leq t\leq T}|M_{t}|^{2}. : That is : E\sup_{0\leq t\leq T}|M_{t}|^{2} : \leq (T-E|M_{T}|^{2})/(2\beta T)
|
a*****k 发帖数: 704 | 6 but this could be a good idea..
【在 a*****k 的大作中提到】 : all the first several lines are right. : after "that is", when you move E\sup to the other side, : the inequality should be reversed. : That's where I think wrong. : correct me if I am wrong
|
l****e 发帖数: 23 | 7 OMG, you are right. (Blush ...)
【在 a*****k 的大作中提到】 : all the first several lines are right. : after "that is", when you move E\sup to the other side, : the inequality should be reversed. : That's where I think wrong. : correct me if I am wrong
|
a*****k 发帖数: 704 | 8 that's ok, baby.
even famous prof.s published wrong papers...
【在 l****e 的大作中提到】 : OMG, you are right. (Blush ...)
|
l****e 发帖数: 23 | 9 这里也错了,呵呵。实际上是:范数(L^{2}或其他)为零蕴涵函数为零值函数(几乎
必然或处处)。不是极限。
to 0 a.s..
【在 l****e 的大作中提到】 : OMG, you are right. (Blush ...)
|
l****e 发帖数: 23 | 10 又想了一下,好像结论不对啊,但是没有把握,请批评指正。:)
Problem: \lim_{\beta\to\infty}\sup_{t\in[0,T]}|\int_{0}^{t}e^{\beta(s-t)}dW_
{s}|=0, a.s.?
As before we denote M_{t}:=\int_{0}^{t}e^{\beta(s-t)}dW_{s}.
Integration by parts gives
M_{t}=W_{t}-\int_{0}^{t}\beta e^{\beta(s-t)}W_{s}ds.
Clearly there exists a subset \Omega_{1} of \Omega with probability 1 such
that:
1, for all \omega\in\Omega_{1}, W is continuous on [0,T] and
2, for all \omega\in\Omega_{1}, there exists a t*\in[0,T] such that W_{t*}\
neq0, namely, |W_{t*
【在 a*****k 的大作中提到】 : that's ok, baby. : even famous prof.s published wrong papers...
|
|
|
B********e 发帖数: 10014 | 11 弱问一下: W_s啥意思?一种特殊测度?
【在 a*****k 的大作中提到】 : 【 以下文字转载自 Quant 讨论区 】 : 发信人: artwork (嘿嘿), 信区: Quant : 标 题: how to show this : 发信站: BBS 未名空间站 (Sun Jul 1 16:00:46 2007), 转信 : lim_{\beta -> \infty} \sup_{0 \leq t\leq T}|\exp(-\beta t) \int^t_0 \exp(\ : beta s)dW_s| = 0, a.s. : anybody has any idea?
|
H****h 发帖数: 1037 | 12 布朗运动吧。
【在 B********e 的大作中提到】 : 弱问一下: W_s啥意思?一种特殊测度?
|
B********e 发帖数: 10014 | 13 哦,我去google学习下布朗运动的话dW_s的性质
【在 H****h 的大作中提到】 : 布朗运动吧。
|
B********e 发帖数: 10014 | 14 呵呵,放弃了
health有时间给讲一下这种积分有什么特别的地方,;)
【在 B********e 的大作中提到】 : 哦,我去google学习下布朗运动的话dW_s的性质
|
H****h 发帖数: 1037 | 15 我不是这方面的专家。统计版有很多高手。
【在 B********e 的大作中提到】 : 呵呵,放弃了 : health有时间给讲一下这种积分有什么特别的地方,;)
|
a*****k 发帖数: 704 | 16 结论应该是对的。这是Karatzs得continuous bm得课后习题,
在bdg那一节后面。
我觉得至少不能直接用bdg。但是不知道应该怎么证。
还有一个可能使这个跟前面一题有关系,关于shiryaev-equation,
但是我还是不知道怎么证。
maybe we should just send an email to Karatzs(wrong spelling) :)
dW_
【在 l****e 的大作中提到】 : 又想了一下,好像结论不对啊,但是没有把握,请批评指正。:) : Problem: \lim_{\beta\to\infty}\sup_{t\in[0,T]}|\int_{0}^{t}e^{\beta(s-t)}dW_ : {s}|=0, a.s.? : As before we denote M_{t}:=\int_{0}^{t}e^{\beta(s-t)}dW_{s}. : Integration by parts gives : M_{t}=W_{t}-\int_{0}^{t}\beta e^{\beta(s-t)}W_{s}ds. : Clearly there exists a subset \Omega_{1} of \Omega with probability 1 such : that: : 1, for all \omega\in\Omega_{1}, W is continuous on [0,T] and : 2, for all \omega\in\Omega_{1}, there exists a t*\in[0,T] such that W_{t*}\
|
l****e 发帖数: 23 | 17 呵呵,我翻看原题了,还是没想明白。如果你弄清楚了恳请告诉我,谢谢!:)
另外,前面第一章“停时”一节开头有个小问题,我们当初读的时候有些迷惑,一并请
教:
Let X be a stochastic process and T a stopping time of (the filtration
generated by X) {F^{X}_{t}}.
Suppose that for any \omega, \omega' in \Omega, we have X_{t}(\omega)=X_{t}(
\omega') for all t in the
intersection of [0,T(\omega)] and [0,\infty). Show that T(\omega)=T(\omega').
【在 a*****k 的大作中提到】 : 结论应该是对的。这是Karatzs得continuous bm得课后习题, : 在bdg那一节后面。 : 我觉得至少不能直接用bdg。但是不知道应该怎么证。 : 还有一个可能使这个跟前面一题有关系,关于shiryaev-equation, : 但是我还是不知道怎么证。 : maybe we should just send an email to Karatzs(wrong spelling) :) : : dW_
|
g******a 发帖数: 69 | 18 Just use the def of the stopping time.
\omega and \omega' are not distinguishable
up to time T(\omega).
}(
').
【在 l****e 的大作中提到】 : 呵呵,我翻看原题了,还是没想明白。如果你弄清楚了恳请告诉我,谢谢!:) : 另外,前面第一章“停时”一节开头有个小问题,我们当初读的时候有些迷惑,一并请 : 教: : Let X be a stochastic process and T a stopping time of (the filtration : generated by X) {F^{X}_{t}}. : Suppose that for any \omega, \omega' in \Omega, we have X_{t}(\omega)=X_{t}( : \omega') for all t in the : intersection of [0,T(\omega)] and [0,\infty). Show that T(\omega)=T(\omega').
|