由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Mathematics版 - how to show this
相关主题
问个随机题Re: How to prove this equality?
有关Lp空间的问题Re: [转载] 有什么算法可以确定一个点在不在多边形内?
问个矢量空间的问题Re: A probability problem
correlation inequalityRe: 请教一个排列问题
请教一个 Stopping Rules in the Binomial ModelRe: 一个不等式的证明
50个包子请教 Chebyshev's integral inequalityA Dummy Question on Recurrence - 紧急求助!!
怎么证明这个函数方程只有f(x)=x一个解一个实分析的问题(L^p space)
Re: 约束条件下的极值问题what is $L_{\infinite}$ metric space?
相关话题的讨论汇总
话题: omega话题: beta话题: leq话题: dw话题: sup
进入Mathematics版参与讨论
1 (共1页)
a*****k
发帖数: 704
1
【 以下文字转载自 Quant 讨论区 】
发信人: artwork (嘿嘿), 信区: Quant
标 题: how to show this
发信站: BBS 未名空间站 (Sun Jul 1 16:00:46 2007), 转信
lim_{\beta -> \infty} \sup_{0 \leq t\leq T}|\exp(-\beta t) \int^t_0 \exp(\
beta s)dW_s| = 0, a.s.
anybody has any idea?
l****e
发帖数: 23
2
BDG inequality?

【在 a*****k 的大作中提到】
: 【 以下文字转载自 Quant 讨论区 】
: 发信人: artwork (嘿嘿), 信区: Quant
: 标 题: how to show this
: 发信站: BBS 未名空间站 (Sun Jul 1 16:00:46 2007), 转信
: lim_{\beta -> \infty} \sup_{0 \leq t\leq T}|\exp(-\beta t) \int^t_0 \exp(\
: beta s)dW_s| = 0, a.s.
: anybody has any idea?

a*****k
发帖数: 704
3
maybe it's true.But the things inside of the sup is not a martingle,
so I don't how to apply it...
could you elaborate?

【在 l****e 的大作中提到】
: BDG inequality?
l****e
发帖数: 23
4
Maybe BDG doesn't work. But I made it in a way similar to the proof of BDG:
Let M_{t}:=\int_{0}^{t}\exp{\beta s-t}dW_{s}.
Apply Ito Formula to |M_{t}|^{2} and integrate from 0 to T, we get
|M_{T}|^{2}=T-2\beta\int_{0}^{T}|M_{t}|^{2}dt+\int_{0}^{T}2M_{t}dW_{t}.
Then taking expectation gives
E|M_{T}|^{2}=T-2\beta E\int_{0}^{T}|M_{t}|^{2}dt
\geq T-2\beta TE\sup_{0\leq t\leq T}|M_{t}|^{2}.
That is
E\sup_{0\leq t\leq T}|M_{t}|^{2}
\leq (T-E|M_{T}|^{2})/(2\beta T)
=1/(2\beta)-(1-\exp{-2\beta T})/(4\be

【在 a*****k 的大作中提到】
: maybe it's true.But the things inside of the sup is not a martingle,
: so I don't how to apply it...
: could you elaborate?

a*****k
发帖数: 704
5
all the first several lines are right.
after "that is", when you move E\sup to the other side,
the inequality should be reversed.
That's where I think wrong.
correct me if I am wrong

【在 l****e 的大作中提到】
: Maybe BDG doesn't work. But I made it in a way similar to the proof of BDG:
: Let M_{t}:=\int_{0}^{t}\exp{\beta s-t}dW_{s}.
: Apply Ito Formula to |M_{t}|^{2} and integrate from 0 to T, we get
: |M_{T}|^{2}=T-2\beta\int_{0}^{T}|M_{t}|^{2}dt+\int_{0}^{T}2M_{t}dW_{t}.
: Then taking expectation gives
: E|M_{T}|^{2}=T-2\beta E\int_{0}^{T}|M_{t}|^{2}dt
: \geq T-2\beta TE\sup_{0\leq t\leq T}|M_{t}|^{2}.
: That is
: E\sup_{0\leq t\leq T}|M_{t}|^{2}
: \leq (T-E|M_{T}|^{2})/(2\beta T)

a*****k
发帖数: 704
6
but this could be a good idea..

【在 a*****k 的大作中提到】
: all the first several lines are right.
: after "that is", when you move E\sup to the other side,
: the inequality should be reversed.
: That's where I think wrong.
: correct me if I am wrong

l****e
发帖数: 23
7
OMG, you are right. (Blush ...)

【在 a*****k 的大作中提到】
: all the first several lines are right.
: after "that is", when you move E\sup to the other side,
: the inequality should be reversed.
: That's where I think wrong.
: correct me if I am wrong

a*****k
发帖数: 704
8
that's ok, baby.
even famous prof.s published wrong papers...

【在 l****e 的大作中提到】
: OMG, you are right. (Blush ...)
l****e
发帖数: 23
9
这里也错了,呵呵。实际上是:范数(L^{2}或其他)为零蕴涵函数为零值函数(几乎
必然或处处)。不是极限。

to 0 a.s..

【在 l****e 的大作中提到】
: OMG, you are right. (Blush ...)
l****e
发帖数: 23
10
又想了一下,好像结论不对啊,但是没有把握,请批评指正。:)
Problem: \lim_{\beta\to\infty}\sup_{t\in[0,T]}|\int_{0}^{t}e^{\beta(s-t)}dW_
{s}|=0, a.s.?
As before we denote M_{t}:=\int_{0}^{t}e^{\beta(s-t)}dW_{s}.
Integration by parts gives
M_{t}=W_{t}-\int_{0}^{t}\beta e^{\beta(s-t)}W_{s}ds.
Clearly there exists a subset \Omega_{1} of \Omega with probability 1 such
that:
1, for all \omega\in\Omega_{1}, W is continuous on [0,T] and
2, for all \omega\in\Omega_{1}, there exists a t*\in[0,T] such that W_{t*}\
neq0, namely, |W_{t*

【在 a*****k 的大作中提到】
: that's ok, baby.
: even famous prof.s published wrong papers...

相关主题
50个包子请教 Chebyshev's integral inequalityRe: How to prove this equality?
怎么证明这个函数方程只有f(x)=x一个解Re: [转载] 有什么算法可以确定一个点在不在多边形内?
Re: 约束条件下的极值问题Re: A probability problem
进入Mathematics版参与讨论
B********e
发帖数: 10014
11
弱问一下: W_s啥意思?一种特殊测度?

【在 a*****k 的大作中提到】
: 【 以下文字转载自 Quant 讨论区 】
: 发信人: artwork (嘿嘿), 信区: Quant
: 标 题: how to show this
: 发信站: BBS 未名空间站 (Sun Jul 1 16:00:46 2007), 转信
: lim_{\beta -> \infty} \sup_{0 \leq t\leq T}|\exp(-\beta t) \int^t_0 \exp(\
: beta s)dW_s| = 0, a.s.
: anybody has any idea?

H****h
发帖数: 1037
12
布朗运动吧。

【在 B********e 的大作中提到】
: 弱问一下: W_s啥意思?一种特殊测度?
B********e
发帖数: 10014
13
哦,我去google学习下布朗运动的话dW_s的性质

【在 H****h 的大作中提到】
: 布朗运动吧。
B********e
发帖数: 10014
14
呵呵,放弃了
health有时间给讲一下这种积分有什么特别的地方,;)

【在 B********e 的大作中提到】
: 哦,我去google学习下布朗运动的话dW_s的性质
H****h
发帖数: 1037
15
我不是这方面的专家。统计版有很多高手。

【在 B********e 的大作中提到】
: 呵呵,放弃了
: health有时间给讲一下这种积分有什么特别的地方,;)

a*****k
发帖数: 704
16
结论应该是对的。这是Karatzs得continuous bm得课后习题,
在bdg那一节后面。
我觉得至少不能直接用bdg。但是不知道应该怎么证。
还有一个可能使这个跟前面一题有关系,关于shiryaev-equation,
但是我还是不知道怎么证。
maybe we should just send an email to Karatzs(wrong spelling) :)

dW_

【在 l****e 的大作中提到】
: 又想了一下,好像结论不对啊,但是没有把握,请批评指正。:)
: Problem: \lim_{\beta\to\infty}\sup_{t\in[0,T]}|\int_{0}^{t}e^{\beta(s-t)}dW_
: {s}|=0, a.s.?
: As before we denote M_{t}:=\int_{0}^{t}e^{\beta(s-t)}dW_{s}.
: Integration by parts gives
: M_{t}=W_{t}-\int_{0}^{t}\beta e^{\beta(s-t)}W_{s}ds.
: Clearly there exists a subset \Omega_{1} of \Omega with probability 1 such
: that:
: 1, for all \omega\in\Omega_{1}, W is continuous on [0,T] and
: 2, for all \omega\in\Omega_{1}, there exists a t*\in[0,T] such that W_{t*}\

l****e
发帖数: 23
17
呵呵,我翻看原题了,还是没想明白。如果你弄清楚了恳请告诉我,谢谢!:)
另外,前面第一章“停时”一节开头有个小问题,我们当初读的时候有些迷惑,一并请
教:
Let X be a stochastic process and T a stopping time of (the filtration
generated by X) {F^{X}_{t}}.
Suppose that for any \omega, \omega' in \Omega, we have X_{t}(\omega)=X_{t}(
\omega') for all t in the
intersection of [0,T(\omega)] and [0,\infty). Show that T(\omega)=T(\omega').

【在 a*****k 的大作中提到】
: 结论应该是对的。这是Karatzs得continuous bm得课后习题,
: 在bdg那一节后面。
: 我觉得至少不能直接用bdg。但是不知道应该怎么证。
: 还有一个可能使这个跟前面一题有关系,关于shiryaev-equation,
: 但是我还是不知道怎么证。
: maybe we should just send an email to Karatzs(wrong spelling) :)
:
: dW_

g******a
发帖数: 69
18
Just use the def of the stopping time.
\omega and \omega' are not distinguishable
up to time T(\omega).

}(
').

【在 l****e 的大作中提到】
: 呵呵,我翻看原题了,还是没想明白。如果你弄清楚了恳请告诉我,谢谢!:)
: 另外,前面第一章“停时”一节开头有个小问题,我们当初读的时候有些迷惑,一并请
: 教:
: Let X be a stochastic process and T a stopping time of (the filtration
: generated by X) {F^{X}_{t}}.
: Suppose that for any \omega, \omega' in \Omega, we have X_{t}(\omega)=X_{t}(
: \omega') for all t in the
: intersection of [0,T(\omega)] and [0,\infty). Show that T(\omega)=T(\omega').

1 (共1页)
进入Mathematics版参与讨论
相关主题
what is $L_{\infinite}$ metric space?请教一个 Stopping Rules in the Binomial Model
不行啊。Re: 诚恳求助:如何用MATHEMATICA确定表达式的符号50个包子请教 Chebyshev's integral inequality
Re: urgent: is a closed set a bounded set?怎么证明这个函数方程只有f(x)=x一个解
Help: Semi-Markov chainRe: 约束条件下的极值问题
问个随机题Re: How to prove this equality?
有关Lp空间的问题Re: [转载] 有什么算法可以确定一个点在不在多边形内?
问个矢量空间的问题Re: A probability problem
correlation inequalityRe: 请教一个排列问题
相关话题的讨论汇总
话题: omega话题: beta话题: leq话题: dw话题: sup