x*********0 发帖数: 651 | 1 我太菜了,听对方的口气就能感觉出来。唉
下面是问到的题目,大家看看,正确答案应该是什么,就当学习了。
1. 100 records, 1 response variable, 100+predictor. x1 is the most important
variable that should be used in the model. However, when y vs. x1 plot, no
pattern can be found. whY?
My anwer: grouping
2. How to select variables (from 1):
My answer: stepwise will be considered. We can also use best subset, but the
predictor is too much, I don’t know if it is applicable.
3. How to evaluate a model:
My answer: adj R square, F, Multicollinearity
4. if | l********s 发帖数: 88 | 2 问问lz这是什么类型的公司什么类型的职位啊?
纯属好奇,什么样的职位电面会问这么专业的统计知识呢?我碰到的都没有问这么专业
的。。。
important
no
the
【在 x*********0 的大作中提到】 : 我太菜了,听对方的口气就能感觉出来。唉 : 下面是问到的题目,大家看看,正确答案应该是什么,就当学习了。 : 1. 100 records, 1 response variable, 100+predictor. x1 is the most important : variable that should be used in the model. However, when y vs. x1 plot, no : pattern can be found. whY? : My anwer: grouping : 2. How to select variables (from 1): : My answer: stepwise will be considered. We can also use best subset, but the : predictor is too much, I don’t know if it is applicable. : 3. How to evaluate a model:
| x*********0 发帖数: 651 | 3 本地的一个小公司,是一个纯技术人员面试的,什么客套都没有,上来就问。职位就是
statistician | d******e 发帖数: 7844 | 4 你这是什么公司啊?居然考这些问题?
1. grouping是什么概念?第一题不就是说明X1不足以解释Y的么?
2. 赶时髦的话可以试试Lasso, Elastic net或者其他shrinkage methods?
3. BIC,AIC,Cross Validation,Generalized Degree of Freedom, Convariance
Penalty等等?
5. 这个老师上课说过,一般是把所有的marginal的variable都算进去,因为漏掉一个
variable比多一个冗余variable对model的影响要大得多。
important
no
the
should
【在 x*********0 的大作中提到】 : 我太菜了,听对方的口气就能感觉出来。唉 : 下面是问到的题目,大家看看,正确答案应该是什么,就当学习了。 : 1. 100 records, 1 response variable, 100+predictor. x1 is the most important : variable that should be used in the model. However, when y vs. x1 plot, no : pattern can be found. whY? : My anwer: grouping : 2. How to select variables (from 1): : My answer: stepwise will be considered. We can also use best subset, but the : predictor is too much, I don’t know if it is applicable. : 3. How to evaluate a model:
| b*******r 发帖数: 152 | 5 food for thought--
1. grouping/subgrouping/segmentation is a good answer. another direction is
to do the transform of x1, eg. log(x1).
2. i think he is looking for some variable reduction techniques, like
clustering, pca, fa, etc...
3.4.i think they are more likely open questions.
5.can u say say why is yr answer?
thx | b**********i 发帖数: 1059 | | S******o 发帖数: 68 | | s*r 发帖数: 2757 | 8 using F test to judge model?
adding more x variables in the regression to reduce mulcollinearity?
important
no
the
【在 x*********0 的大作中提到】 : 我太菜了,听对方的口气就能感觉出来。唉 : 下面是问到的题目,大家看看,正确答案应该是什么,就当学习了。 : 1. 100 records, 1 response variable, 100+predictor. x1 is the most important : variable that should be used in the model. However, when y vs. x1 plot, no : pattern can be found. whY? : My anwer: grouping : 2. How to select variables (from 1): : My answer: stepwise will be considered. We can also use best subset, but the : predictor is too much, I don’t know if it is applicable. : 3. How to evaluate a model:
| c*********n 发帖数: 87 | 9 R is linear correlation coefficient which is used to evaluate the linear
relationship between the dependent and independent variables. If the model
is a linear model, then R^2 means the model explains 30% of variability of
the dependent variable. If the model is not a linear model, then R^2 could
not make inference for the model validation. | s*r 发帖数: 2757 | 10 r2 can be used in nonlinear situations
【在 c*********n 的大作中提到】 : R is linear correlation coefficient which is used to evaluate the linear : relationship between the dependent and independent variables. If the model : is a linear model, then R^2 means the model explains 30% of variability of : the dependent variable. If the model is not a linear model, then R^2 could : not make inference for the model validation.
| h***x 发帖数: 586 | 11 都是实际中常用的问题
important
no
the
【在 x*********0 的大作中提到】 : 我太菜了,听对方的口气就能感觉出来。唉 : 下面是问到的题目,大家看看,正确答案应该是什么,就当学习了。 : 1. 100 records, 1 response variable, 100+predictor. x1 is the most important : variable that should be used in the model. However, when y vs. x1 plot, no : pattern can be found. whY? : My anwer: grouping : 2. How to select variables (from 1): : My answer: stepwise will be considered. We can also use best subset, but the : predictor is too much, I don’t know if it is applicable. : 3. How to evaluate a model:
| b********n 发帖数: 95 | 12 why you think that could be a good model when R2 around 30%? That should be
pretty bad result for correlation ba.
important
no
the
【在 x*********0 的大作中提到】 : 我太菜了,听对方的口气就能感觉出来。唉 : 下面是问到的题目,大家看看,正确答案应该是什么,就当学习了。 : 1. 100 records, 1 response variable, 100+predictor. x1 is the most important : variable that should be used in the model. However, when y vs. x1 plot, no : pattern can be found. whY? : My anwer: grouping : 2. How to select variables (from 1): : My answer: stepwise will be considered. We can also use best subset, but the : predictor is too much, I don’t know if it is applicable. : 3. How to evaluate a model:
| b********n 发帖数: 95 | 13 and question 5, you should at least ask about the p-value for each model ba.
.....
maybe one of x3 or x4 is just some useless variable.
important
no
the
【在 x*********0 的大作中提到】 : 我太菜了,听对方的口气就能感觉出来。唉 : 下面是问到的题目,大家看看,正确答案应该是什么,就当学习了。 : 1. 100 records, 1 response variable, 100+predictor. x1 is the most important : variable that should be used in the model. However, when y vs. x1 plot, no : pattern can be found. whY? : My anwer: grouping : 2. How to select variables (from 1): : My answer: stepwise will be considered. We can also use best subset, but the : predictor is too much, I don’t know if it is applicable. : 3. How to evaluate a model:
|
|