由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Statistics版 - 电话面试完了,肯定没戏,大家帮我看看题目,就算学习吧
相关主题
请问:想fit gamma 并同时用lasso的方法做variable selection请教SAS高手关于lasso...
抓狂!为啥选出来的predictor都这么差新人问个matlab统计方面的问题
[合集] 电话面试完了,肯定没戏,大家帮我看看题目,就算学习吧regression的时候什么时候要standardize variables?
ridge regression 都有哪些assumption需要check关于lasso的variable selection问题
用LASSO选变量后重新fit regression有什么弊端?【大包子】Factor data analysis
model的predictors之间有multi-colinearity怎么办?Gene expression =?= Variable selection
有80个候选Predictors,怎么从中选<10个logistic regression结果释疑,解读
logistic, overfit了怎么办?请教一个multi colinearity的问题
相关话题的讨论汇总
话题: model话题: variable话题: my话题: x1话题: important
进入Statistics版参与讨论
1 (共1页)
x*********0
发帖数: 651
1
我太菜了,听对方的口气就能感觉出来。唉
下面是问到的题目,大家看看,正确答案应该是什么,就当学习了。
1. 100 records, 1 response variable, 100+predictor. x1 is the most important
variable that should be used in the model. However, when y vs. x1 plot, no
pattern can be found. whY?
My anwer: grouping
2. How to select variables (from 1):
My answer: stepwise will be considered. We can also use best subset, but the
predictor is too much, I don’t know if it is applicable.
3. How to evaluate a model:
My answer: adj R square, F, Multicollinearity
4. if
l********s
发帖数: 88
2
问问lz这是什么类型的公司什么类型的职位啊?
纯属好奇,什么样的职位电面会问这么专业的统计知识呢?我碰到的都没有问这么专业
的。。。

important
no
the

【在 x*********0 的大作中提到】
: 我太菜了,听对方的口气就能感觉出来。唉
: 下面是问到的题目,大家看看,正确答案应该是什么,就当学习了。
: 1. 100 records, 1 response variable, 100+predictor. x1 is the most important
: variable that should be used in the model. However, when y vs. x1 plot, no
: pattern can be found. whY?
: My anwer: grouping
: 2. How to select variables (from 1):
: My answer: stepwise will be considered. We can also use best subset, but the
: predictor is too much, I don’t know if it is applicable.
: 3. How to evaluate a model:

x*********0
发帖数: 651
3
本地的一个小公司,是一个纯技术人员面试的,什么客套都没有,上来就问。职位就是
statistician
d******e
发帖数: 7844
4
你这是什么公司啊?居然考这些问题?
1. grouping是什么概念?第一题不就是说明X1不足以解释Y的么?
2. 赶时髦的话可以试试Lasso, Elastic net或者其他shrinkage methods?
3. BIC,AIC,Cross Validation,Generalized Degree of Freedom, Convariance
Penalty等等?
5. 这个老师上课说过,一般是把所有的marginal的variable都算进去,因为漏掉一个
variable比多一个冗余variable对model的影响要大得多。

important
no
the
should

【在 x*********0 的大作中提到】
: 我太菜了,听对方的口气就能感觉出来。唉
: 下面是问到的题目,大家看看,正确答案应该是什么,就当学习了。
: 1. 100 records, 1 response variable, 100+predictor. x1 is the most important
: variable that should be used in the model. However, when y vs. x1 plot, no
: pattern can be found. whY?
: My anwer: grouping
: 2. How to select variables (from 1):
: My answer: stepwise will be considered. We can also use best subset, but the
: predictor is too much, I don’t know if it is applicable.
: 3. How to evaluate a model:

b*******r
发帖数: 152
5
food for thought--
1. grouping/subgrouping/segmentation is a good answer. another direction is
to do the transform of x1, eg. log(x1).
2. i think he is looking for some variable reduction techniques, like
clustering, pca, fa, etc...
3.4.i think they are more likely open questions.
5.can u say say why is yr answer?
thx
b**********i
发帖数: 1059
6
本帖信息量高。
S******o
发帖数: 68
7
ding!
s*r
发帖数: 2757
8
using F test to judge model?
adding more x variables in the regression to reduce mulcollinearity?

important
no
the

【在 x*********0 的大作中提到】
: 我太菜了,听对方的口气就能感觉出来。唉
: 下面是问到的题目,大家看看,正确答案应该是什么,就当学习了。
: 1. 100 records, 1 response variable, 100+predictor. x1 is the most important
: variable that should be used in the model. However, when y vs. x1 plot, no
: pattern can be found. whY?
: My anwer: grouping
: 2. How to select variables (from 1):
: My answer: stepwise will be considered. We can also use best subset, but the
: predictor is too much, I don’t know if it is applicable.
: 3. How to evaluate a model:

c*********n
发帖数: 87
9
R is linear correlation coefficient which is used to evaluate the linear
relationship between the dependent and independent variables. If the model
is a linear model, then R^2 means the model explains 30% of variability of
the dependent variable. If the model is not a linear model, then R^2 could
not make inference for the model validation.
s*r
发帖数: 2757
10
r2 can be used in nonlinear situations

【在 c*********n 的大作中提到】
: R is linear correlation coefficient which is used to evaluate the linear
: relationship between the dependent and independent variables. If the model
: is a linear model, then R^2 means the model explains 30% of variability of
: the dependent variable. If the model is not a linear model, then R^2 could
: not make inference for the model validation.

h***x
发帖数: 586
11
都是实际中常用的问题

important
no
the

【在 x*********0 的大作中提到】
: 我太菜了,听对方的口气就能感觉出来。唉
: 下面是问到的题目,大家看看,正确答案应该是什么,就当学习了。
: 1. 100 records, 1 response variable, 100+predictor. x1 is the most important
: variable that should be used in the model. However, when y vs. x1 plot, no
: pattern can be found. whY?
: My anwer: grouping
: 2. How to select variables (from 1):
: My answer: stepwise will be considered. We can also use best subset, but the
: predictor is too much, I don’t know if it is applicable.
: 3. How to evaluate a model:

b********n
发帖数: 95
12
why you think that could be a good model when R2 around 30%? That should be
pretty bad result for correlation ba.

important
no
the

【在 x*********0 的大作中提到】
: 我太菜了,听对方的口气就能感觉出来。唉
: 下面是问到的题目,大家看看,正确答案应该是什么,就当学习了。
: 1. 100 records, 1 response variable, 100+predictor. x1 is the most important
: variable that should be used in the model. However, when y vs. x1 plot, no
: pattern can be found. whY?
: My anwer: grouping
: 2. How to select variables (from 1):
: My answer: stepwise will be considered. We can also use best subset, but the
: predictor is too much, I don’t know if it is applicable.
: 3. How to evaluate a model:

b********n
发帖数: 95
13
and question 5, you should at least ask about the p-value for each model ba.
.....
maybe one of x3 or x4 is just some useless variable.

important
no
the

【在 x*********0 的大作中提到】
: 我太菜了,听对方的口气就能感觉出来。唉
: 下面是问到的题目,大家看看,正确答案应该是什么,就当学习了。
: 1. 100 records, 1 response variable, 100+predictor. x1 is the most important
: variable that should be used in the model. However, when y vs. x1 plot, no
: pattern can be found. whY?
: My anwer: grouping
: 2. How to select variables (from 1):
: My answer: stepwise will be considered. We can also use best subset, but the
: predictor is too much, I don’t know if it is applicable.
: 3. How to evaluate a model:

1 (共1页)
进入Statistics版参与讨论
相关主题
请教一个multi colinearity的问题用LASSO选变量后重新fit regression有什么弊端?
A Model question, urgent please!!model的predictors之间有multi-colinearity怎么办?
急问:请教一个muliticollinearity的面试问题,谢谢!有80个候选Predictors,怎么从中选<10个
building prediction models from large datasetlogistic, overfit了怎么办?
请问:想fit gamma 并同时用lasso的方法做variable selection请教SAS高手关于lasso...
抓狂!为啥选出来的predictor都这么差新人问个matlab统计方面的问题
[合集] 电话面试完了,肯定没戏,大家帮我看看题目,就算学习吧regression的时候什么时候要standardize variables?
ridge regression 都有哪些assumption需要check关于lasso的variable selection问题
相关话题的讨论汇总
话题: model话题: variable话题: my话题: x1话题: important