由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Science版 - 出两道数学分析题目给大家做做
相关主题
积分求解--谢谢先Re: 求解两道数学题!
这个题怎么作?(数学)Re: 求解两道数学题
Re: 问个最小二乘法的问题一个极限问题
Help: what is the integral of delta(t)^2?Re: 请教计算物理高人
a limit questionStandard solution Re: [转载] 概率难题
Re: SOS: 这个矩阵问题会把我折磨疯了!!光滑非齐次项的一维波动方程有非光滑解的例子?
淋雨的概率Stephan Jay Gould dead today
我的答案Re: 淋雨的概率Re: how to get the following Dirac relation?
相关话题的讨论汇总
话题: sup话题: integral话题: prove话题: dx话题: so
进入Science版参与讨论
1 (共1页)
k**t
发帖数: 12
1
1 suppose f is a continous function defined on [0, n], and f(0)=f(n)
(x,y) is a good pair if (1) x-y=Integer; (2) f(x)=f(y).
Prove there is at least n good pairs.
2 Define M_k=sup f^(k) ( f^(k): f's k-th derivative), f is a smooth function
on R.
Prove M_1^2<=2M_0M_2
到底有没有数学版啊
I***e
发帖数: 1136
2

Assume that f'(0)=0, f'(a)=A>0 and f'(x) is positive between 0 and a. Then,
Sup_{0<=x<=a} | f(x) | > 1/2 Integral_{x=0 to a} f'(x) dx.
A^2 = f'(a)^2 = Integral_{x=0 to a} f'(x) f''(x) dx < Integral f'(x) dx *
sup(f''(x))
So A^2 < 2* Sup_[0,a] |f(x)| * Sup_[0,a] | f''(x) |
This easily generates to the desired result because of the following:
1. f has to be bounded. If f' has a zero point then the problem is solved.
2. if f' doesn't have a zero point, then this problem can be proven by
limiting s

【在 k**t 的大作中提到】
: 1 suppose f is a continous function defined on [0, n], and f(0)=f(n)
: (x,y) is a good pair if (1) x-y=Integer; (2) f(x)=f(y).
: Prove there is at least n good pairs.
: 2 Define M_k=sup f^(k) ( f^(k): f's k-th derivative), f is a smooth function
: on R.
: Prove M_1^2<=2M_0M_2
: 到底有没有数学版啊

k**t
发帖数: 12
3
给一个几何证明
图中直线的斜率是-M_2,曲线是f',曲线不能到三角形里面去,否则和M_2的定义矛盾,
所以曲线的积分面积大于三角形的面积。
假设f(0)=0,f'(0)=M_1,
把刚才的意思翻译出来就得到不等式了。
一般情况下,要分情况讨论,idea就是这样

Then,
I***e
发帖数: 1136
4

Then,
Oops... you are right...
But the proof can be modified by considering f such that f'(0)=f'(b)=0 and
f'(a)=A is the local maximum of f'(x) between 0 and b, 0 that
f(a)>= min( integral_[0,a] f'(x), Integral_[a,b] f'(x) )
So there is no more 1/2 in the inequality for f(a). Thus we can still make the
conclusion...
Icare
1 (共1页)
进入Science版参与讨论
相关主题
Re: how to get the following Dirac relation?a limit question
Re: 有人用Maltlab么?请教一个问题。Re: SOS: 这个矩阵问题会把我折磨疯了!!
4-阶龙格库塔子程序淋雨的概率
Re: 反过来还是?我的答案Re: 淋雨的概率
积分求解--谢谢先Re: 求解两道数学题!
这个题怎么作?(数学)Re: 求解两道数学题
Re: 问个最小二乘法的问题一个极限问题
Help: what is the integral of delta(t)^2?Re: 请教计算物理高人
相关话题的讨论汇总
话题: sup话题: integral话题: prove话题: dx话题: so