由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Science版 - numerical ODE又来啦
相关主题
请教一个解多体dynamics的问题questions
Re: analytic solution for an ODE...Re: 谁有fast Fourire transform的子程序)
numerical solving PDE on infinite semi-plane (转载)Re: Help! Equation(s) for a circle
hanzo---RK算法Re: 一个物理题:请教
什么排序法最好?Re: 关于随机数产生的问题?
Re: [转载] 问个数学问题....problem on nonlinear differential equation
Re: 卫星能看到地上的高尔夫球?-professional_answeerRe: 如何数学描述这个光学脉冲
Re: 谁能谈谈微分方程组的稳定性的问题?Re: 如何计算球对称势对入射电子的微分散射截面?
相关话题的讨论汇总
话题: ode话题: numerical话题: theta话题: paramter话题: runge
进入Science版参与讨论
1 (共1页)
f**n
发帖数: 401
1
How to find out the time when x(t) hit \theta, in which the
dynamics of x(t) is given by the following ODE:
dx(t)/dt=f(t)-cx(t),x(0)=0
and \theta is a paramter.
我现在已经知道用Runge-Kutta法可以解ODE,但是对于我上面的问题,有没有特定的
方法呢?
thx&bow!
c*******o
发帖数: 1722
2
hmm.... i kinda see your point.
the homogeneous solution part is just an exponential increase or decay,
but you probably more interested in increase (coz your boundary conditions).
as for the special solution part, it is a convolution, which you can numeric
ally
solve, provided you have numbers for f(t). it is just a \Sigma of those nume
rial
values. if f(t) is smooth and not a weird function, you should be able to p
redict
the trend by just adding more and more f(t) at different time......
he

【在 f**n 的大作中提到】
: How to find out the time when x(t) hit \theta, in which the
: dynamics of x(t) is given by the following ODE:
: dx(t)/dt=f(t)-cx(t),x(0)=0
: and \theta is a paramter.
: 我现在已经知道用Runge-Kutta法可以解ODE,但是对于我上面的问题,有没有特定的
: 方法呢?
: thx&bow!

1 (共1页)
进入Science版参与讨论
相关主题
Re: 如何计算球对称势对入射电子的微分散射截面?什么排序法最好?
[转载] Urgent: A simple problem. Thanks!Re: [转载] 问个数学问题....
another 物理小题Re: 卫星能看到地上的高尔夫球?-professional_answeer
Re: 另外一道高中物理题-征解Re: 谁能谈谈微分方程组的稳定性的问题?
请教一个解多体dynamics的问题questions
Re: analytic solution for an ODE...Re: 谁有fast Fourire transform的子程序)
numerical solving PDE on infinite semi-plane (转载)Re: Help! Equation(s) for a circle
hanzo---RK算法Re: 一个物理题:请教
相关话题的讨论汇总
话题: ode话题: numerical话题: theta话题: paramter话题: runge