由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Quant版 - 请教2道概率题
相关主题
[合集] a probability questionA random walk problem.
【Probability】a problem[Markov Chain] 世界矿工的一道笔试题
Interview Questions from two "famous" hedge fundsdice problem
A probability question问一个面试题,关于概率的
another interview question问一个simple random walk的问题
expected maximum loss of double or nothing gambling strategyold probability Q
An interview question of unfair coin's stop time这道题, 我做得对马?(stochastic process)
Interview question on random walk大家来扔硬币-an interview question
相关话题的讨论汇总
话题: toss话题: u2话题: win话题: u1
进入Quant版参与讨论
1 (共1页)
o****e
发帖数: 80
1
1) a rabbit can either jump up 2 steps or it will jump down 1 step, each with
50% chance. What is the probability
that it will eventually get to -1?
2) A game, you have $2, I have $1, toss a unfair coin, you win probability is 0.4 and I win probability 0.6,
once bet $1, what is the probability I win in the final. How many expect toss before the game is over.
c*****y
发帖数: 4
2
两道题解题思路一样. 构造鞅.
详细见:
http://www.mitbbs.com/article_t/Quant/31249959.html

with
probability is 0.4 and I win probability 0.6,
toss before the game is over.

【在 o****e 的大作中提到】
: 1) a rabbit can either jump up 2 steps or it will jump down 1 step, each with
: 50% chance. What is the probability
: that it will eventually get to -1?
: 2) A game, you have $2, I have $1, toss a unfair coin, you win probability is 0.4 and I win probability 0.6,
: once bet $1, what is the probability I win in the final. How many expect toss before the game is over.

o****e
发帖数: 80
3
谢谢你,我弄明白第一题了。 第二题的概率可以用gamblers ruin来解,但是
expected toss怎么解?

【在 c*****y 的大作中提到】
: 两道题解题思路一样. 构造鞅.
: 详细见:
: http://www.mitbbs.com/article_t/Quant/31249959.html
:
: with
: probability is 0.4 and I win probability 0.6,
: toss before the game is over.

o****e
发帖数: 80
4
expected toss in second question:
my solution is like this,
Markov chain
u0=0 u3=0
u1=1+0.6*u2+0.4*u0
u2=1+0.6*u3+0.4*u1 → u1=40/19 u2=35/19
so the expected toss is 40/19?
可是为什么从第二个人算,expected toss 就是 35/19?

【在 o****e 的大作中提到】
: 谢谢你,我弄明白第一题了。 第二题的概率可以用gamblers ruin来解,但是
: expected toss怎么解?

c*****y
发帖数: 4
5
from the point of view of the one owns 2:
suppose current state is 0, then ending state is -2 or 1. Let n(k) be the
expected times need from state k=-2, -1, 0, 1, then, in responding to your
calculation, we have
u0=n(1), u1=n(0), u2=n(-1), u3=n(-2).
o****e
发帖数: 80
6
就是说两个player的mc不同因为赢得概率不同,一个0。4, 一个0。6。
从p=0.6的player 1的角度来看,就是我刚才这样算得
Markov chain
u0=0 u3=0
u1=1+0.6*u2+0.4*u0
u2=1+0.6*u3+0.4*u1 → u1=40/19 u2=35/19
so the expected toss is u1=40/19
那么u2=35/19又代表什么呢?

your

【在 c*****y 的大作中提到】
: from the point of view of the one owns 2:
: suppose current state is 0, then ending state is -2 or 1. Let n(k) be the
: expected times need from state k=-2, -1, 0, 1, then, in responding to your
: calculation, we have
: u0=n(1), u1=n(0), u2=n(-1), u3=n(-2).

s****n
发帖数: 1237
7
u2表示p1=0.6的$2,p2=0.4的$1开始的概率。和现在p1=0.4的$2,p2=0.6的$1开始不一
样。
如果p1=p2=0.5那u1应该=u2。

【在 o****e 的大作中提到】
: 就是说两个player的mc不同因为赢得概率不同,一个0。4, 一个0。6。
: 从p=0.6的player 1的角度来看,就是我刚才这样算得
: Markov chain
: u0=0 u3=0
: u1=1+0.6*u2+0.4*u0
: u2=1+0.6*u3+0.4*u1 → u1=40/19 u2=35/19
: so the expected toss is u1=40/19
: 那么u2=35/19又代表什么呢?
:
: your

p*****k
发帖数: 318
8
ogtree, in addition to the excellent posts above, see
http://www.mitbbs.com/article_t/Quant/31207033.html
for the martingale approach to problem (2)
(a=2 & b=1 for your particular question)
once you get the ruin probability, simply use the martingale:
X(n)-0.2*n
and apply optional stopping to get the expected # of tosses:
E[X(n)-0.2*n]=0,
i.e., E[n]=5*E[X(n)]=5*[9/19*(+2)+10/19*(-1)]=40/19
J*******g
发帖数: 267
9
yes, two diff mc from the perspective of two diff players, and diff initial
state
all factors included, you get the same answer

【在 o****e 的大作中提到】
: 就是说两个player的mc不同因为赢得概率不同,一个0。4, 一个0。6。
: 从p=0.6的player 1的角度来看,就是我刚才这样算得
: Markov chain
: u0=0 u3=0
: u1=1+0.6*u2+0.4*u0
: u2=1+0.6*u3+0.4*u1 → u1=40/19 u2=35/19
: so the expected toss is u1=40/19
: 那么u2=35/19又代表什么呢?
:
: your

o****e
发帖数: 80
10
谢谢你,你真是好人那

【在 p*****k 的大作中提到】
: ogtree, in addition to the excellent posts above, see
: http://www.mitbbs.com/article_t/Quant/31207033.html
: for the martingale approach to problem (2)
: (a=2 & b=1 for your particular question)
: once you get the ruin probability, simply use the martingale:
: X(n)-0.2*n
: and apply optional stopping to get the expected # of tosses:
: E[X(n)-0.2*n]=0,
: i.e., E[n]=5*E[X(n)]=5*[9/19*(+2)+10/19*(-1)]=40/19

1 (共1页)
进入Quant版参与讨论
相关主题
大家来扔硬币-an interview questionanother interview question
请教一个面试题expected maximum loss of double or nothing gambling strategy
有两道题目求解An interview question of unfair coin's stop time
请教fair coin一道题Interview question on random walk
[合集] a probability questionA random walk problem.
【Probability】a problem[Markov Chain] 世界矿工的一道笔试题
Interview Questions from two "famous" hedge fundsdice problem
A probability question问一个面试题,关于概率的
相关话题的讨论汇总
话题: toss话题: u2话题: win话题: u1