由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Quant版 - asymmetic random walk questions
相关主题
martingale questiont*Wt是不是martingale?
青蛙跳问题问个随机积分的问题
[合集] Optional Sampling Theorem 的条件是什么?请教一个面试题
A martingale questionW(t/2) + W(t) is a martingale ?
求大家推荐一下关于 martingaleGirsanov Theorem的证明
一个百思不得其解 的 Martingale stopping time 问题概率的测度理论重要吗?
一道题贴个概率题
[合集] assume W(t) is a standard Brownian motion3 interview questions
相关话题的讨论汇总
话题: xn话题: asymmetic话题: prob话题: random话题: lose
进入Quant版参与讨论
1 (共1页)
p******i
发帖数: 1358
1
两种情况:
1.toss a UNFAIR coin say probability 0.6 head/0.4 tail, if it comes out a
head, you get $1,otherwise you lose $1, what is the prob. you have win $a
before you lose $b
2.toss a FAIR coin, if head, you get $2,other wise you lose 1, same question
J*****n
发帖数: 4859
2

question
Markov Chain

【在 p******i 的大作中提到】
: 两种情况:
: 1.toss a UNFAIR coin say probability 0.6 head/0.4 tail, if it comes out a
: head, you get $1,otherwise you lose $1, what is the prob. you have win $a
: before you lose $b
: 2.toss a FAIR coin, if head, you get $2,other wise you lose 1, same question

p******i
发帖数: 1358
3
详细讲讲?

【在 J*****n 的大作中提到】
:
: question
: Markov Chain

p*****k
发帖数: 318
4
suppose a and b are positive integers.
for the 1st problem, it's easier to construct the martingale: (3/2)^(-xn), where xn is the dollar amount you win after n rounds, and apply optimal stopping theorem. in general the martingale is [p(H)/p(T)]^(-xn). the desired prob satisfies the eq.:
p*(3/2)^(-a)+(1-p)*(3/2)^(b)=1,
thus p=[(3/2)^(a+b)-(3/2)^a]/[(3/2)^(a+b)-1].
for the 2nd problem, i will interpret the question as to find the probability of winning at least $a before losing $b (note the forw
p******i
发帖数: 1358
5
nice solution,thx

where xn is the dollar amount you win after n rounds, and apply optimal
stopping theorem. in general the martingale is [p(H)/p(T)]^(-xn). the
desired prob satisfies the eq.:
probability of winning at least $a before losing $b (note the forward jump
is 2 - the random walk could pass "a" without hitting it). the optimal
stopping theorem does not work too well here, as one could stop at either a
or a+1. instead denote p(n) as the desired prob if one starts with $n. the
recur

【在 p*****k 的大作中提到】
: suppose a and b are positive integers.
: for the 1st problem, it's easier to construct the martingale: (3/2)^(-xn), where xn is the dollar amount you win after n rounds, and apply optimal stopping theorem. in general the martingale is [p(H)/p(T)]^(-xn). the desired prob satisfies the eq.:
: p*(3/2)^(-a)+(1-p)*(3/2)^(b)=1,
: thus p=[(3/2)^(a+b)-(3/2)^a]/[(3/2)^(a+b)-1].
: for the 2nd problem, i will interpret the question as to find the probability of winning at least $a before losing $b (note the forw

1 (共1页)
进入Quant版参与讨论
相关主题
3 interview questions求大家推荐一下关于 martingale
请教2道概率题一个百思不得其解 的 Martingale stopping time 问题
问个random walk的问题一道题
请教一道题[合集] assume W(t) is a standard Brownian motion
martingale questiont*Wt是不是martingale?
青蛙跳问题问个随机积分的问题
[合集] Optional Sampling Theorem 的条件是什么?请教一个面试题
A martingale questionW(t/2) + W(t) is a martingale ?
相关话题的讨论汇总
话题: xn话题: asymmetic话题: prob话题: random话题: lose