r*****b 发帖数: 305 | 1 我很菜,所以想请教下。
有4个不同颜色的球,现在进行6次试验(每次试验都是4个不同颜色的球),每次抓一
个球出来,请问6次试验后拿到4个不同颜色球的概率是多少? | i*****t 发帖数: 24265 | 2 概率=0
6次应该抓到6个球,那么其中必然有同样颜色的,不会是4个不同颜色的球,而是6个球 | d*********r 发帖数: 297 | 3 with replacement or without replacement? | A********2 发帖数: 107 | 4 For calculating the probability P(P(b)) of picking a ball of any color
exactly X times, the Poisson distribution is
P(P(b) = X) = [m^X * e^-m]/ X! where m is the expected number of times
each ball appears amongst your pool
in your case, m = 6/4
For P(C(v) =0) the Poisson distribution simplifies to e^(-m)
So the probability that a given ball of any color is 'picked' is P(P(b) >0 )
= 1 - e^(-6/4) = 0.7768698
So the probability that all the four balls with different colors are picked
is 0.364.
Not hundred percent sure it is correct though :) | r*****b 发帖数: 305 | 5 原题是这样的,不知道我的中文是不是翻译对了。
Assume that every time you buy an item of the Hong Kong Disney series, you
receive one of the
four types of cards, each with a cartoon character Mickey, Minnie, Donald
and Daisy with an equal
probability. Over a period of time, you buy 6 items of the series. What is
the probability that you will
get all four cards?
我自己的答案是
全概率空间是4^6=4096
1种颜色:C(4,1)*6!/6!=4
两种颜色:C(4, 2)*[6!/(2!*4!)+6!/(3!*3!)+6!/(4!*2!)+6!/5!+6!/5!]=372
三种颜色:C(4, 3)*[C(3, 2)*C(2, 1)*6!/(3!*2!)
+C(3, 1)*6!/4!+C(3, 3)*6!/(2!*2!*2!)]=2160
四种颜色:C(4, 1)*6!/3!+C(4, 2)*6!/(2!*2!)=1560
4+372+2160+1560=4096
所求概率是: 1560/4096=0.38
【在 r*****b 的大作中提到】 : 我很菜,所以想请教下。 : : 有4个不同颜色的球,现在进行6次试验(每次试验都是4个不同颜色的球),每次抓一 : 个球出来,请问6次试验后拿到4个不同颜色球的概率是多少?
| d*********r 发帖数: 297 | 6 if with replacement: P=(4*3*2*1*4*4)/(4*4*4*4*4*4)=0.0937
if without replacement: after 4 times, you will have no balls to take.the P
=1 | d*********r 发帖数: 297 | | d*********r 发帖数: 297 | 8 http://blog.plover.com/math/yahtzee.html
这里有这一类问题的详细模型。
【在 r*****b 的大作中提到】 : 我很菜,所以想请教下。 : : 有4个不同颜色的球,现在进行6次试验(每次试验都是4个不同颜色的球),每次抓一 : 个球出来,请问6次试验后拿到4个不同颜色球的概率是多少?
|
|