p********a 发帖数: 761 | | n***p 发帖数: 7668 | 2 sqrt(3).
【在 p********a 的大作中提到】 : 好像中学时做过,现在都忘了 : 谢了
| m**********e 发帖数: 1045 | | n***p 发帖数: 7668 | 4 其实是微积分里面的例题。
We need only consider S_n = sqrt( 2 + sqrt(2 + sqrt(2+ ...) ) )
with n level of sqrt and consider its limit as nto infty.
S_n is increasing as n increases, and Sn is bounded above (by 2). Then
S_n has a limit, say S.
Recursively S_n = sqrt(2 + S_{n-1}). Taking limit on both sides, we have
S = sqrt(2+S). Solving it we obtain S=2.
What LZ wants is just sqrt(1+S) = sqrt(3).
【在 m**********e 的大作中提到】 : 求详细解法
| z*********g 发帖数: 37 | 5 S=sqrt(2+....)
S*S=2+S
S=2
Sqrt(1+S)=sqrt(3) | G******i 发帖数: 163 | 6 \begin{array}{l}
2=\sqrt{2+2}\cr
2=\sqrt{2+\sqrt{2+2}}\cr
2=\sqrt{2+\sqrt{2+\sqrt{2+2}}}\cr
2=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+2}}}}\cr
\vdots\cr
\end{array}
To see the equations, copy & paste the above to
http://www.codecogs.com/latex/eqneditor.php
【在 n***p 的大作中提到】 : 其实是微积分里面的例题。 : We need only consider S_n = sqrt( 2 + sqrt(2 + sqrt(2+ ...) ) ) : with n level of sqrt and consider its limit as nto infty. : S_n is increasing as n increases, and Sn is bounded above (by 2). Then : S_n has a limit, say S. : Recursively S_n = sqrt(2 + S_{n-1}). Taking limit on both sides, we have : S = sqrt(2+S). Solving it we obtain S=2. : What LZ wants is just sqrt(1+S) = sqrt(3).
|
|