由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Mathematics版 - 问个微分方程求解?
相关主题
问个微分方程[合集]关于田刚老师和我的一件事的说明
问个laplace变换解微分方程的问题关于这个方程的一个问题
Help: Numerical method of Generalized Mittag-Leffler Functions?请问此偏微分方程的解析解
[转载]Re: [转载] 数学的精神----(二)请问这个常微分方程的通解?
[转载]侃侃计算数学 (微分方程数值解)这个微分方程怎么解呢?
一个简单的常微分方程求通解台湾一所一般高校的师资
!!!微分方程问题求解!!!偏微分方程求解
中国数学人传记连载(9):丁夏畦请教Matlab高手
相关话题的讨论汇总
话题: int话题: ax话题: constant话题: dx话题: let
进入Mathematics版参与讨论
1 (共1页)
f*******y
发帖数: 421
1
y''''=(a+b*x)*y,a,b are constant. any hints or links? thanks.
C********n
发帖数: 6682
2
分离变量,不停地积分

【在 f*******y 的大作中提到】
: y''''=(a+b*x)*y,a,b are constant. any hints or links? thanks.
C********n
发帖数: 6682
3
1 11
-y^3 ln(y) - --y^3 = (f+ex+dx^2 +cx^3 +a^x4 +x^5)
6 18

【在 f*******y 的大作中提到】
: y''''=(a+b*x)*y,a,b are constant. any hints or links? thanks.
f*******y
发帖数: 421
4
多谢。分离变量后,右边积分是b*x^5+...;左边积分是不是1/6y^3ln(y)+h*x^3+...?
总共a,b,c,d,e,f,h,i,j,k常数?
C********n
发帖数: 6682
5
右边只有x,左边只有y

【在 f*******y 的大作中提到】
: 多谢。分离变量后,右边积分是b*x^5+...;左边积分是不是1/6y^3ln(y)+h*x^3+...?
: 总共a,b,c,d,e,f,h,i,j,k常数?

f*******y
发帖数: 421
6
敲错了,左边应当是1/6y^3ln(y)+h*y^3+i*y^2+j*y+k,不清楚11/18y^3怎么得来的?
多谢
C********n
发帖数: 6682
7
逐项微分应该就看到了吧

【在 f*******y 的大作中提到】
: 敲错了,左边应当是1/6y^3ln(y)+h*y^3+i*y^2+j*y+k,不清楚11/18y^3怎么得来的?
: 多谢

f*******y
发帖数: 421
8
i think the answer should be:
1/6y^3ln(y)+h*y^3+i*y^2+j*y+k=f+ex+dx^2+cx^3+1/24ax^4+1/120bx^5
The left side is 4th order derivation, so any y^3 will not have an effect.
Please let me know if i am wrong. thanks.
B********e
发帖数: 10014
9
咋积分 y''''/y?

【在 C********n 的大作中提到】
: 分离变量,不停地积分
f*******y
发帖数: 421
10
更进一步,如果有实验数据点(x,y),如何曲线拟合上面的解?多谢。
相关主题
一个简单的常微分方程求通解[合集]关于田刚老师和我的一件事的说明
!!!微分方程问题求解!!!关于这个方程的一个问题
中国数学人传记连载(9):丁夏畦请问此偏微分方程的解析解
进入Mathematics版参与讨论
f*******y
发帖数: 421
11
int(1/y)=lny
int(lny)=ylny+a
...
right?
B********e
发帖数: 10014
12
well,
int(1/y) \neq int(y''''/y)
all i have is the formula (11) or (12) on this page
http://eqworld.ipmnet.ru/en/solutions/ode/ode-toc4.htm
(after a transformation z=ax+b of course)

【在 f*******y 的大作中提到】
: int(1/y)=lny
: int(lny)=ylny+a
: ...
: right?

B********e
发帖数: 10014
13
neither
int(int(int(int(1/y))))=int(y''''/y)
or
y''''/y=ax+b <=> int(int(int(int(1/y))))=int(int(int(int(ax+b))))

【在 B********e 的大作中提到】
: well,
: int(1/y) \neq int(y''''/y)
: all i have is the formula (11) or (12) on this page
: http://eqworld.ipmnet.ru/en/solutions/ode/ode-toc4.htm
: (after a transformation z=ax+b of course)

f*******y
发帖数: 421
14
my math is almost all gone and i cannot follow eq11 or 12 in your link with
substitution, especially with the 4th order, could you please explain more
why the keep intergrating method is wrong? thanks.
or if my target is to fit experimental data with a relation as the
differential equation to get estimations of constant a and b, is there any
other way to do it without solving the differential equation? it looks like
either way it will be a quite complex solution or no explicit solution at
all.
B********e
发帖数: 10014
15
I'm not saying Corinthian was wrong,he shouldn't have made mistake like that
. I just didn't get what he said.
On the substitution,
y''''=(ax+b)y
(want to change it to form of y''''=kxy)
simply let z=ax+b, then you view y as function of z, use chain rule:
dy/dx=dy/dz * dz/dx=dy/dz *a,
y''(x)=y''(z)*a^2 ,
...
y''''(x)=y''''(z)*a^4=zy(z) =>
y''''(z)=zy(z)/a^4
change back notation and let k=1/a^4
y''''=kxy
then you use the formula there
Numerically, I don't know. ;-(, but I don't think you should use difference
scheme, it takes too many grids.
I would rather go to the complex but explicit formula there and let computer
do the calculation.

with
like

【在 f*******y 的大作中提到】
: my math is almost all gone and i cannot follow eq11 or 12 in your link with
: substitution, especially with the 4th order, could you please explain more
: why the keep intergrating method is wrong? thanks.
: or if my target is to fit experimental data with a relation as the
: differential equation to get estimations of constant a and b, is there any
: other way to do it without solving the differential equation? it looks like
: either way it will be a quite complex solution or no explicit solution at
: all.

B********e
发帖数: 10014
16
right, I would do the formula (12) with a=k, \beta=1, n=4
and let computer calculate the Mittag-Leffler function/(mainly Gamma)/
factorial
Fancy weird names draw more credits for your paper,
should be a good thing for you, right? hehe

【在 B********e 的大作中提到】
: I'm not saying Corinthian was wrong,he shouldn't have made mistake like that
: . I just didn't get what he said.
: On the substitution,
: y''''=(ax+b)y
: (want to change it to form of y''''=kxy)
: simply let z=ax+b, then you view y as function of z, use chain rule:
: dy/dx=dy/dz * dz/dx=dy/dz *a,
: y''(x)=y''(z)*a^2 ,
: ...
: y''''(x)=y''''(z)*a^4=zy(z) =>

f*******y
发帖数: 421
17
could you please explain why int(int(int(int(1/y))))!=int(y''''/y)?
i use tablecurve2d to fit data and looks like no Mittag-Leffier function. as
to matlab, i donot have curvefit toolbox, can i still do it in matlab?
thanks.
1 (共1页)
进入Mathematics版参与讨论
相关主题
请教Matlab高手[转载]侃侃计算数学 (微分方程数值解)
求教一个简单的curve generator software一个简单的常微分方程求通解
请教偏微分方程中"trace"的概念!!!微分方程问题求解!!!
二维微分方程周期轨道的内部是不是一定包含一个平衡点?中国数学人传记连载(9):丁夏畦
问个微分方程[合集]关于田刚老师和我的一件事的说明
问个laplace变换解微分方程的问题关于这个方程的一个问题
Help: Numerical method of Generalized Mittag-Leffler Functions?请问此偏微分方程的解析解
[转载]Re: [转载] 数学的精神----(二)请问这个常微分方程的通解?
相关话题的讨论汇总
话题: int话题: ax话题: constant话题: dx话题: let