由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Mathematics版 - election problem
相关主题
请教一个概率题find distribution paramters only by data mean and std. dev. (转载)
问个广义积分题minimal sufficient statistic (转载)
solve an optimization model with integral as constraints (转载)问个数学题
问个初等数学题求助,关于数学问题(来自美国数学大联盟题目)
H^1_{0,\Gamma_0}的dual space是什么?HOw to numerically integrate noisy data
Is there such a "measure" on integers?面试题 - 数学?
smallest a+b+c请问怎样解这个面试题?
how to do data fitting to find distribution (转载)问一道题目 包子酬谢!
相关话题的讨论汇总
话题: y0话题: x0话题: beta话题: election话题: voters
进入Mathematics版参与讨论
1 (共1页)
D**u
发帖数: 204
1
Two candidates (R and L) are for the 2008 election. In the election, voters
are in a single line and are going to vote one by one. After each voter
makes the vote, the other voters immediately knows who he/she voted for.
Voters tend to stay with the "winner's side", if at the moment the
candidates have x and y votes respectively, the voter will vote R with
probability x/(x+y), and vote L with probability y/(x+y).
Suppose R and L initially have x0 and y0 votes each (x0 and y0 are far
smaller than
H****h
发帖数: 1037
2
期望不变。过程是鞅。计算分布有难度。

voters

【在 D**u 的大作中提到】
: Two candidates (R and L) are for the 2008 election. In the election, voters
: are in a single line and are going to vote one by one. After each voter
: makes the vote, the other voters immediately knows who he/she voted for.
: Voters tend to stay with the "winner's side", if at the moment the
: candidates have x and y votes respectively, the voter will vote R with
: probability x/(x+y), and vote L with probability y/(x+y).
: Suppose R and L initially have x0 and y0 votes each (x0 and y0 are far
: smaller than

D**u
发帖数: 204
3
Maybe starting with a few examples like (x0,y0)=(1,1), or (1,2) can be
helpful on the distribution.

【在 H****h 的大作中提到】
: 期望不变。过程是鞅。计算分布有难度。
:
: voters

H****h
发帖数: 1037
4
你知道答案?

【在 D**u 的大作中提到】
: Maybe starting with a few examples like (x0,y0)=(1,1), or (1,2) can be
: helpful on the distribution.

D**u
发帖数: 204
5
yes.

【在 H****h 的大作中提到】
: 你知道答案?
H****h
发帖数: 1037
6
那我就等答案了。呵呵。

【在 D**u 的大作中提到】
: yes.
D**u
发帖数: 204
7
再等两天, 答案还是比较有趣的.

【在 H****h 的大作中提到】
: 那我就等答案了。呵呵。
D**u
发帖数: 204
8
答案.
(1) x0/(x0+y0), easy to prove.
(2) Beta distribution:
f(t; x0,y0) = 1/Beta(x0,y0) * (1-t)^(x0-1) * t^(y0-1)
= gamma(x0+y0)/(gamma(x0) * gamma(y0)) * (1-t)^(x0-1) * t^(y0-1).
Easy to check that f(t; x0,y0) satisfies the recursive formula:
f(t;x0,y0) = x0/(x0+y0) * f(t;x0+1,y0) + y0/(x0+y0) * f(t;x0,y0+1)
It is relatively easy to prove when x0 and y0 are integers. For non-integers
x0 and y0, I only have a guess that it's Beta distribution but no
theoretical proof (only have numerical "proof").

【在 D**u 的大作中提到】
: 再等两天, 答案还是比较有趣的.
H****h
发帖数: 1037
9
这是你做的科研问题吗?看来一个问题的突破关键是要找到不变量。
那个递推公式明显在x0和y0为非整数情形也成立。你指的困难是什么?
最后你得出的结论似乎是对于任何的t,f(t;xn,yn)是一个鞅。
怎么再进一步?

integers

【在 D**u 的大作中提到】
: 答案.
: (1) x0/(x0+y0), easy to prove.
: (2) Beta distribution:
: f(t; x0,y0) = 1/Beta(x0,y0) * (1-t)^(x0-1) * t^(y0-1)
: = gamma(x0+y0)/(gamma(x0) * gamma(y0)) * (1-t)^(x0-1) * t^(y0-1).
: Easy to check that f(t; x0,y0) satisfies the recursive formula:
: f(t;x0,y0) = x0/(x0+y0) * f(t;x0+1,y0) + y0/(x0+y0) * f(t;x0,y0+1)
: It is relatively easy to prove when x0 and y0 are integers. For non-integers
: x0 and y0, I only have a guess that it's Beta distribution but no
: theoretical proof (only have numerical "proof").

D**u
发帖数: 204
10
This is not my research topic. It's a brain teaser (for (x0,y0)=(1,1),
which is the original "Polya's urn problem")
given by a friend, and I made a guess for general (x0,y0).
The difficulty I have is that I can not prove that the Beta distribution
is indeed the answer for non-integer (x0,y0), though it is very ease to
check that Beta distribution satisfies the recursive formula (which is
a formula the answer must satisfy).
I did some numerical test, and Beta distribution matches the numerical
so

【在 H****h 的大作中提到】
: 这是你做的科研问题吗?看来一个问题的突破关键是要找到不变量。
: 那个递推公式明显在x0和y0为非整数情形也成立。你指的困难是什么?
: 最后你得出的结论似乎是对于任何的t,f(t;xn,yn)是一个鞅。
: 怎么再进一步?
:
: integers

1 (共1页)
进入Mathematics版参与讨论
相关主题
问一道题目 包子酬谢!H^1_{0,\Gamma_0}的dual space是什么?
some tales of mathematic!ans(127)Is there such a "measure" on integers?
请教一个renewal precess的问题smallest a+b+c
杨振宁在数学上有什么重要贡献?how to do data fitting to find distribution (转载)
请教一个概率题find distribution paramters only by data mean and std. dev. (转载)
问个广义积分题minimal sufficient statistic (转载)
solve an optimization model with integral as constraints (转载)问个数学题
问个初等数学题求助,关于数学问题(来自美国数学大联盟题目)
相关话题的讨论汇总
话题: y0话题: x0话题: beta话题: election话题: voters