由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Statistics版 - 数据科学之江湖兵器谱 (转载)
相关主题
Data Mining 的方向前途[合集] 用SAS or SUDAAN处理人口统计数据的问题
抛砖引玉:敢问路在何方?missing values imputation
请教一个基础问题,对于连续变量的Bayes公式面试时关于如何处理missing data的回答
How to get summary statistics from multiple imputed data sets真心请教: data cleaning
question about multiple imputation of not normally distributed variable如何计算imputed data set的mean的confidence interval
请教做过Multiple Imputation 的牛牛们帮朋友post一个SAS问题,求高人指点。多谢各位了!
请教做过Multiple Imputation 的牛牛们关于time series的一个问题,请教大牛~
请教几个logistic regression model的问题大家平时怎么处理missing data?
相关话题的讨论汇总
话题: learning话题: modeling话题: 方法话题: 数据话题: engine
进入Statistics版参与讨论
1 (共1页)
g*****l
发帖数: 424
1
【 以下文字转载自 DataSciences 讨论区 】
发信人: greatel (灵致), 信区: DataSciences
标 题: 数据科学之江湖兵器谱
发信站: BBS 未名空间站 (Sun Oct 9 16:57:10 2016, 美东)
【注】原发于微信公众号:data_wisdom
数据江湖,风起云涌。各路英豪,群雄逐鹿。
这是一个数据科学最好的时代,也是数据江湖最乱的时代。
那么在这么一个特殊的江湖里面浪,有什么兵器是值得我们去关注的呢?这篇文章列举
了一些常用方法(刀剑),并不涵盖工具与平台。就先让我们一起去看看这个排名不分
先后左右的兵器谱。
数据科学家Vincent Granville博士发表博文列举了数据科学家常用的45种技术。这是
个很适合初学者去逐个了解的列表。当然,这并不代表数据科学(统计学)的全部。虽
然他并没有提出自己的详细总结,但是有志于学习数据科学的同学不妨初步有个印象,
有不太熟悉的topic可以进一步去了解一下。另外我在后面也补充了我认为也值得学习
的领域,很多人都会在日常的数据实践中用到。多学有益于身心健康。
首先需要说明的是,这些技术只是大概涵盖了大部分数据科学家以及相关领域的实践者
日常用的方法。这一般意味着他们或使用第三方的解决方案(比如R和Python里面提供
的相关package),或者自己需要调整或者重新设计合适的工具。
废话少说,列举如下:
1. 线性回归 Linear Regression
2. 逻辑回归 Logistic Regression
3. 刀切回归 Jackknife Regression *
4. 密度估计 Density Estimation
5. 置信区间 Confidence Interval
6. 假设检验 Test of Hypotheses
7. 模式识别 Pattern Recognition
8. 聚类(或者无监督学习) Clustering - (aka Unsupervised Learning)
9. 有监督学习 Supervised Learning
10. 时间序列分析 Time Series
11. 决策树 Decision Trees
12. 随机数 Random Numbers
13. 蒙特卡洛模拟 Monte-Carlo Simulation
14. 贝叶斯统计 Bayesian Statistics
15. 朴素贝叶斯 Naive Bayes
16. 主成分分析 Principal Component Analysis - (PCA)
17. 联合学习方法 Ensembles
18. 神经网络 Neural Networks
19. 支持向量机 Support Vector Machine - (SVM)
20. 最近邻方法 Nearest Neighbors - (k-NN)
21. 特征选择(变量削减) Feature Selection - (aka Variable Reduction)
22. 指数化(编目化)Indexation / Cataloguing *
23. 空间统计建模(时空统计)(Geo-) Spatial Modeling
24. 推荐引擎 Recommendation Engine *
25. 搜索引擎 Search Engine *
26. 归因模型 Attribution Modeling *
27. 协同过滤 Collaborative Filtering *
28. 规则系统 Rule System
29. 连锁分析 Linkage Analysis
30. 关联规则 Association Rules
31. 打分引擎 Scoring Engine
32. 分割(特指数据分割)Segmentation
33. 预测建模 Predictive Modeling
34. 图数据分析 Graphs
35. 深度学习 Deep Learning
36. 博弈论 Game Theory
37. 数据填充 Imputation
38. 生存分析 Survival Analysis
39. 统计套利 statistical Arbitrage
40. 推举建模 Lift Modeling
41. 产量优化 Yield Optimization
42. 交叉验证 Cross-Validation
43. 模型拟合 Model Fitting
44. 关联算法那 Relevancy Algorithm *
45. 实验设计 Experimental Design
以上是Granville博士的观点。
以我自己的经验,一般数据科学家并不会涉及这上面的所有方法,而且很多重要的技术
也没有在上面出现,比如在我的观点中,一下对于日常的数据战场特别有帮助的武功
a 凸优化(convex analysis)
b 组合优化(combinatorial optimization)
c 半监督学习 (semi-supervised learning)
d 采样(sampling)
e 强化学习 (reinforcement learning)
f 自组织映射 (self-organized map)
g 独立成分分析 (ICA)
h 降维 (dimensioin reduction)
i 最大似然估计 (MLE)
j 通用核方法 (general kernal method)
k 模型选择 (model selection)
l 样条方法 (spline method)
m 正则化 (regularization)
n 归一化 (normalization)
o 经验贝叶斯 (empirical bayes)
p EM算法 (EM algorithm)
q 变分发 (variational method)
r 图模型 (graphical models)
s 可视化 (visualization)
t 高斯混合模型 (Gaussian mixture models)
u 异常检测(abnormity/outlier detection)
v 方差分析 (ANOVA)
w 遗传算法 (genetic algorithm)
x 算法表现评估 (algorithm performance evaluation)
y 计算机视觉主流方法 (computer vision)
z 自然语言处理主流方法 (Natural language processing)
天下功夫,万变不离其宗。所有的套路与武器,都是为了在数据的海洋里面寻找到目标
问题的解药。方法无所谓高低,招数无所谓贵贱。能够达成你的目标的,就是最适合你
当下的武器。
希望这些对大家的数据实践有所帮助。
参考:
http://www.datasciencecentral.com/profiles/blogs/40-techniques-used-by-data-scientists
1 (共1页)
进入Statistics版参与讨论
相关主题
大家平时怎么处理missing data?question about multiple imputation of not normally distributed variable
求解, 用SAS PROC MI 做 missing data imputation请教做过Multiple Imputation 的牛牛们
[合集] question about MLE请教做过Multiple Imputation 的牛牛们
请问两道sas adv的题..请教几个logistic regression model的问题
Data Mining 的方向前途[合集] 用SAS or SUDAAN处理人口统计数据的问题
抛砖引玉:敢问路在何方?missing values imputation
请教一个基础问题,对于连续变量的Bayes公式面试时关于如何处理missing data的回答
How to get summary statistics from multiple imputed data sets真心请教: data cleaning
相关话题的讨论汇总
话题: learning话题: modeling话题: 方法话题: 数据话题: engine