d******e 发帖数: 7844 | 1 X~Poi(a)
Y~Poi(b)
X,Y独立
求P(X=Y) |
D*****a 发帖数: 2847 | 2 独立吗
【在 d******e 的大作中提到】 : X~Poi(a) : Y~Poi(b) : X,Y独立 : 求P(X=Y)
|
d******e 发帖数: 7844 | 3 恩,独立
【在 D*****a 的大作中提到】 : 独立吗
|
z****e 发帖数: 2024 | 4 if poi() is continuous. p(x=y)=0. |
d******e 发帖数: 7844 | 5 ... ...你是来恶搞的,还是你不知道Poisson啊
【在 z****e 的大作中提到】 : if poi() is continuous. p(x=y)=0.
|
z****e 发帖数: 2024 | 6 I don't assume any universal syntax could be used until it is defined.
If the answer is not 0, please show your reasoning.
Thanks.
【在 d******e 的大作中提到】 : ... ...你是来恶搞的,还是你不知道Poisson啊
|
d******e 发帖数: 7844 | 7 Poi(a)是Poisson分布啊
【在 z****e 的大作中提到】 : I don't assume any universal syntax could be used until it is defined. : If the answer is not 0, please show your reasoning. : Thanks.
|
o****o 发帖数: 8077 | 8 universal syntax?
in any domain, there are symbols universally assumed to refer to certain subjects
Poi(\lambda) indicates poisson distribution ah
【在 z****e 的大作中提到】 : I don't assume any universal syntax could be used until it is defined. : If the answer is not 0, please show your reasoning. : Thanks.
|
z****e 发帖数: 2024 | 9 I have to say, the pdf expression needs an explicit definition or else even 1/\lambda and \lambda for a Poisson could make difference. lots of books out there using different notations for the same pdf.
guys, please focus on lz's question. if not 0, i'd like to learn.
subjects
【在 o****o 的大作中提到】 : universal syntax? : in any domain, there are symbols universally assumed to refer to certain subjects : Poi(\lambda) indicates poisson distribution ah
|
a*********r 发帖数: 108 | 10 赞“思维”
even 1/\lambda and \lambda for a Poisson could make difference. lots of
books out there using different notations for the same pdf.
【在 z****e 的大作中提到】 : I have to say, the pdf expression needs an explicit definition or else even 1/\lambda and \lambda for a Poisson could make difference. lots of books out there using different notations for the same pdf. : guys, please focus on lz's question. if not 0, i'd like to learn. : : subjects
|
|
|
a*********r 发帖数: 108 | 11 lz这个直接按P(X=Y=k)拆开算算就是那个级数,不知有无closed form
【在 d******e 的大作中提到】 : X~Poi(a) : Y~Poi(b) : X,Y独立 : 求P(X=Y)
|
d******e 发帖数: 7844 | 12 我知道是个级数,就想知道有没有closed form。刚刚用mathematica算了,给出一个
Bessell函数的积分形势。估计没有closed form了
【在 a*********r 的大作中提到】 : lz这个直接按P(X=Y=k)拆开算算就是那个级数,不知有无closed form
|
a*********r 发帖数: 108 | 13 估计是没有
【在 d******e 的大作中提到】 : 我知道是个级数,就想知道有没有closed form。刚刚用mathematica算了,给出一个 : Bessell函数的积分形势。估计没有closed form了
|
z****e 发帖数: 2024 | 14 which 级数? thanks.
since poi() is defined as Poisson, it is not continuous,so the answer should
not be zero.
【在 a*********r 的大作中提到】 : lz这个直接按P(X=Y=k)拆开算算就是那个级数,不知有无closed form
|
C******y 发帖数: 1997 | 15 The Skellam distribution is the discrete probability distribution of the
difference n1 − n2 of two statistically independent random variables
n1 and n2 each having Poisson distributions with different expected values
μ1 and μ2.
【在 d******e 的大作中提到】 : X~Poi(a) : Y~Poi(b) : X,Y独立 : 求P(X=Y)
|
D*****a 发帖数: 2847 | 16 wow. there's a distribution. haha.
【在 C******y 的大作中提到】 : The Skellam distribution is the discrete probability distribution of the : difference n1 − n2 of two statistically independent random variables : n1 and n2 each having Poisson distributions with different expected values : μ1 and μ2.
|
j*****0 发帖数: 10 | |