由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Science版 - Re: Another Question on PSD Matrix
相关主题
[转载] 南大张伟平捧回世界级数学大奖Re: What's fluctuation dissipation theorem?
爱情无理学最新研究报告,呵呵没人关心abel奖啊
为什么田刚得不了菲尔兹奖? [zz]Re: 请教两个数学问题
Re: 一道题,怎么没人Re?Re: Random Walk
Re: 大家别笑话我(as the title for me, too.)Re: 世界人口极限大约是多少?
Re: 第二定律和Liouville theorem.Re: 闲的时候科学家们想些什么? ---如何成为权威啊
Re: HELP!!! Inequality.Re: Where is Matrix Inverse subroutine? Thx.
Re: dreamforest theorem, or dreamforest's theorem?Re: 请问数学系的大虾们怎么翻译
相关话题的讨论汇总
话题: matrix话题: 凸集话题: aij话题: another话题: psd
进入Science版参与讨论
1 (共1页)
B***y
发帖数: 83
1
这是道非常有意思的题目。涉及到凸集结构。
首先在一个 Banach space B 中,
我们定义一个凸集 C 为
1) If x, y \in C, then for t \in [0, 1], tx + (1-t)y \in C.
现在定义 C = set of all n*n seme-positive definite matrix A = (aij), with each
element aij \in [0, 1].
定义 C_k = set of all n*n seme-positive definite matrix A = (aij), with each
element aij \in [0, 1], with rank >= k.
那么 C 在所有 n*n 对称矩阵中,给出了一个凸集。更重要的是 C_k 也是凸集。
凸集的一般事实是:如果存在于有限维空间中,则总存在 basis, 即线性
无关向量集。( reference: 张恭庆,关肇直:线性泛函分析讲义,convex analysis,
1977
J.T. Marti.)
Theorem ( Minkows
o**p
发帖数: 2
2
I think what Boll means is: You got k(k+1)/2 rank 1 matrix
decomposition of the original matrix. And each rank 1 matrix can
be represented by the vector.
For your answer. Yes, it's easy to get the 'spectral' decomposition.
But those factors may not be satisfy the requirment [0,1], as you
mentioned. But this requirment is important.

each
each
analysis,
\in C,
+ S
norm,
1 (共1页)
进入Science版参与讨论
相关主题
Re: 请问数学系的大虾们怎么翻译Re: 大家别笑话我(as the title for me, too.)
Re: creat 2D matrix in matlabRe: 第二定律和Liouville theorem.
Re: What is diagonalisation of a matrix?Re: HELP!!! Inequality.
Re: matrix inverseRe: dreamforest theorem, or dreamforest's theorem?
[转载] 南大张伟平捧回世界级数学大奖Re: What's fluctuation dissipation theorem?
爱情无理学最新研究报告,呵呵没人关心abel奖啊
为什么田刚得不了菲尔兹奖? [zz]Re: 请教两个数学问题
Re: 一道题,怎么没人Re?Re: Random Walk
相关话题的讨论汇总
话题: matrix话题: 凸集话题: aij话题: another话题: psd