由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Science版 - Re: 两将军问题--Fredholm
相关主题
Is Laplacian operator Hermitian?help with numerical integral transformation
积分求解--谢谢先Re: 任意形状n多边形的重心
Re: statistics questions.高手们再帮我一把
出个统计的物理题玩吧Re: repost: Integration Help!
Re: 有没有微分,积分的网址?Re: 数学作业
Re: 请教统计光学一道题Re: help: integration
Re: 积分,积分,积分Re: 求教相速度和群速度
Re: Optimization booksRe: [转载] how to integrate a curve?
相关话题的讨论汇总
话题: fredholm话题: trangle话题: integral话题: operator话题: general
进入Science版参与讨论
1 (共1页)
h*l
发帖数: 19
1
Ok, now, in general, this is a Fredholm integral
equation of the 1st kind.
h(r) = \integral (f(r,r')*g(r')*dr') r,r' is n
dim vector.
h(r), f(r,r') is known, we want to find g(r).
For this 3-general problem, f(r,r')=0 if outside
r-3-trangle; f(r,r')=1 if inside r-3-trangle. h(r)=
0.5. Domain is the large trangle.
As we know, Fredholm operator here is a continue
linear operator, and we should find it's spectrum
to solve. Of course, practically, we just use the
technique I proposed
1 (共1页)
进入Science版参与讨论
相关主题
Re: [转载] how to integrate a curve?Re: 有没有微分,积分的网址?
Re: 请问哪一种方法在作数值积分时收敛最快Re: 请教统计光学一道题
Re: 积分请教Re: 积分,积分,积分
Re: [转载] Help!Re: Optimization books
Is Laplacian operator Hermitian?help with numerical integral transformation
积分求解--谢谢先Re: 任意形状n多边形的重心
Re: statistics questions.高手们再帮我一把
出个统计的物理题玩吧Re: repost: Integration Help!
相关话题的讨论汇总
话题: fredholm话题: trangle话题: integral话题: operator话题: general