由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Science版 - Re: Ask2:
相关主题
Re: Who knows Zipf distribution?Re: How to solve ode (Bernoulli case)
Re: 统计问题再请教 (1)My commens on the Superluminal ... paper
我的答案Re: 淋雨的概率Re: Symbol function/eigenvalue
Re: 土土一问(about chaos theory)Suggesions: Re: 有人熟悉mie scattering?
Re: 要不大家费点劲杨振宁:美与物理学
Re: 卫星能看到地上的高尔夫球?-professional_answeerRe: 数值分析中 factorization 是什么?
heating question我这个解法存在什么逻辑漏洞?
Re: help转载:Heroes in My Heart (也许待续)
相关话题的讨论汇总
话题: limit话题: ask2话题: non话题: analytical话题: increasing
进入Science版参与讨论
1 (共1页)
P***a
发帖数: 9
1

If one of A and B is 0, the answer is 0.
If both are positive, the limit of A and B can be proven to
exist, and they are equal.
It's easy to obtain the limit of A and B by programming,
given any specific A and B, because the interval of [B_n,
A_n] is non-increasing (A_n is non_increasing and B_n is
non-decreasing).
But I am not sure whether you have to be forced to get the
analytical solution of the limit of A and B? A pure
mathematical question?
I cannot give the analytical formula. But this q
s***e
发帖数: 911
2

This dynamics is:
x_{i+1}=(1/2)*(x_{i}+y_{i})
y_{i+1}=Sqrt[x_{i}*y_{i}]
This fixed points are determined:
x=(1/2)*(x+y)=>x=y
y=Sqrt[x*y]=y
也就是说任何二维点(x,x)都是该映射不动点. 在这不动点处分析稳定性:
映色Jacobi为:
A={{1/2,1/2},{1/2,1/2}}
特征值是: lambda=0, 和lambda=1.
lamda=0对应和45度线垂直的特征矢量; lambda=1对应和45度线平行的特征矢量.
也就是说, 45度线是该映射的稳定流形. 任何初始点映射足够长时间, 终点都在
这45度线上. 轨迹靠近直线处,和直线垂直.
粗推了一下,没仔细考虑.错漏别笑, hoho...
附录: 有关概念简介和这个推导的补充说明:
叠代动力学是指:
R_{i+1}=M(R_{i})
其中R是n维矢量(上诉例子就是二维的叠代), M是映射(动力学). 这个叠代M的不动
点R_{c}指这样的点:
M(R_{c})=R_{c}
这个方程也就
1 (共1页)
进入Science版参与讨论
相关主题
转载:Heroes in My Heart (也许待续)Re: 要不大家费点劲
Re: 牛顿有什么牛的地方?Re: 卫星能看到地上的高尔夫球?-professional_answeer
hanzo---RK算法heating question
Re: who can try this problem?Re: help
Re: Who knows Zipf distribution?Re: How to solve ode (Bernoulli case)
Re: 统计问题再请教 (1)My commens on the Superluminal ... paper
我的答案Re: 淋雨的概率Re: Symbol function/eigenvalue
Re: 土土一问(about chaos theory)Suggesions: Re: 有人熟悉mie scattering?
相关话题的讨论汇总
话题: limit话题: ask2话题: non话题: analytical话题: increasing