D**u 发帖数: 204 | 1 Your friend and you are going to play a game,
and you 2 are partners.
Your goal is to design a communication method
between you and your friend, and here is how
it goes:
Someone will give you 3 cards drawn randomly from
8 cards(1,2,...8). After you look at the cards, you can
rearrange them into a new order(1st,2nd,3rd) and
you hold the 3rd card not showing to your friend.
Question:
Can you prove whether there exists a method such
that when you show the 1st, 2nd(in order) cards
to your friend, th | B***y 发帖数: 83 | 2
这位兄台把题目改简单了一些,不过对组合题目,维数的变化
带来的难度变化很大。这题目看来就是这样。
首先说说欧的思路。欧首先要建立一个对应规则,让一个数对,
(a,b) ( a \ne b, 考虑顺序), 1 <= a, b <= 8 对应到 另一
个数 c \in [1,8] ( c \ne a, b), 这样每当欧列出一个数对,
欧的partner根据这个规则知道“第三张牌”,c.
可以把以上看做是一个映射:(a,b) -> (a,b,c)
要求是这个映射的象集,(a,b,c)当不考虑顺序时,覆盖所有
的三数组对, (a,b,c), 1<= a < b < c <=8.
好了,这个映射的原象集(a,b) 1 <= a, b <=8, a \ne b 共
有8 * 7 = 56 个元素。
这个映射的象集,当不考虑(a,b,c)排列的顺序时, (亦即 我们
认为 (1,2,3) 跟(3,2,1), (3,1,2) 是一样的, 这对应
于随机抽取的三张牌。) 共有
( 8 ) = 8*7*6
3 ----- = 56 个元素。
6
【在 D**u 的大作中提到】 : Your friend and you are going to play a game, : and you 2 are partners. : Your goal is to design a communication method : between you and your friend, and here is how : it goes: : Someone will give you 3 cards drawn randomly from : 8 cards(1,2,...8). After you look at the cards, you can : rearrange them into a new order(1st,2nd,3rd) and : you hold the 3rd card not showing to your friend. : Question:
| B***y 发帖数: 83 | 3 (续)
这问题有一个有趣的几何解释:
在一个圆周上顺时针取八个点:1,2,3,。。。8. 所有以这些点
为顶点的三角形共有 8*7*6/6 = 56 个。以这些点为端点的边有
8*7/2 = 28 条。问题现在变为:
是否我们能在每个三角形中取一条边染上色,这样使得所有28 条边
每条都被染了两遍? | B***y 发帖数: 83 | 4 (续2)
最后我们可以给出结果了:
1)这种“1-1”映射存在,且不唯一。所以你跟你拍档
能赢这游戏。:)
2)这种映射可以做成旋转不变型:这里的旋转定义为
R(a) = a+1 (mod 8)
亦即顺时针转 2\pi / 8 角度,
我们的原来映射 (a,b) -> (a,b,c) = F(a,b) (见Reply 1)
可以做成满足
F(a+1,b+1) = F(a,b) + 1
即 R 和 F 的作用可交换。
最后附一句:关于原题 26 张牌取4张,前三张排列决定第
4张也是可以的。 |
|