s*****e 发帖数: 20 | 1 问题:
Let u(x) = 1/d(R^2 - X^2), W_t a d-dimensional wiener process.
By applying Ito's formula to show that
u(W_t) = -t - /int_0^t (2/d)W_s dW_s +(1/d)R^2 |
f**********i 发帖数: 45 | 2 W_t是d维的,所以dW_t^2=d*dt
t)
【在 s*****e 的大作中提到】 : 问题: : Let u(x) = 1/d(R^2 - X^2), W_t a d-dimensional wiener process. : By applying Ito's formula to show that : u(W_t) = -t - /int_0^t (2/d)W_s dW_s +(1/d)R^2
|
s*****e 发帖数: 20 | 3 这个我理解了,但如何解呢?
【在 f**********i 的大作中提到】 : W_t是d维的,所以dW_t^2=d*dt : : t)
|
f**********i 发帖数: 45 | 4 Calculate du first and then integrate...
【在 s*****e 的大作中提到】 : 这个我理解了,但如何解呢?
|
s*****e 发帖数: 20 | 5 我怎么算都不对,我也不知到哪里出错了。。。。
【在 f**********i 的大作中提到】 : Calculate du first and then integrate...
|
L**********u 发帖数: 194 | 6 could you please write down your question precisely?
【在 s*****e 的大作中提到】 : 问题: : Let u(x) = 1/d(R^2 - X^2), W_t a d-dimensional wiener process. : By applying Ito's formula to show that : u(W_t) = -t - /int_0^t (2/d)W_s dW_s +(1/d)R^2
|
x******a 发帖数: 6336 | 7 first order derivative w.r.t. x_i is \partial_i{u} =-2x_i/;
second order derivative w.r.t. x_i and x_j is
\partial_{ij}{u}= \delta_{ij} -2/d;
u(W_0) =u(0)= R^2/d;
du(W_t)=\sum_{i}\partial_{i=1}^{d}{u}dw_i +1/2\sum_{i=1}^{d}
\partial_{ii}{u
}dt = \sum_{i} -2w_i/d dw_i + 1/2 sum_i -2/d dt
=-2/d W_tdW_t - dt
u(W_t)= u(W_0) + \int_0^t du =R^2/d -t -2/d \int_0^t W_s dW_s. |
l*******1 发帖数: 113 | |
s*****e 发帖数: 20 | 9 谢谢大牛,崇拜敬仰中!
【在 x******a 的大作中提到】 : first order derivative w.r.t. x_i is \partial_i{u} =-2x_i/; : second order derivative w.r.t. x_i and x_j is : \partial_{ij}{u}= \delta_{ij} -2/d; : u(W_0) =u(0)= R^2/d; : du(W_t)=\sum_{i}\partial_{i=1}^{d}{u}dw_i +1/2\sum_{i=1}^{d} : \partial_{ii}{u : }dt = \sum_{i} -2w_i/d dw_i + 1/2 sum_i -2/d dt : =-2/d W_tdW_t - dt : u(W_t)= u(W_0) + \int_0^t du =R^2/d -t -2/d \int_0^t W_s dW_s.
|
s*****e 发帖数: 20 | 10 谢谢,我去看看
【在 l*******1 的大作中提到】 : google bessel process
|
s*****e 发帖数: 20 | 11 \sum_{i} -2w_i/d dw_i + 1/2 sum_i -2/d dt = -2/d W_tdW_t - dt
请问最后一项里面的 1/d 哪里去了, 不应该是 1/d dt 吗?
【在 x******a 的大作中提到】 : first order derivative w.r.t. x_i is \partial_i{u} =-2x_i/; : second order derivative w.r.t. x_i and x_j is : \partial_{ij}{u}= \delta_{ij} -2/d; : u(W_0) =u(0)= R^2/d; : du(W_t)=\sum_{i}\partial_{i=1}^{d}{u}dw_i +1/2\sum_{i=1}^{d} : \partial_{ii}{u : }dt = \sum_{i} -2w_i/d dw_i + 1/2 sum_i -2/d dt : =-2/d W_tdW_t - dt : u(W_t)= u(W_0) + \int_0^t du =R^2/d -t -2/d \int_0^t W_s dW_s.
|
s*****e 发帖数: 20 | 12 额。。。。和sum的 d 约掉了
【在 s*****e 的大作中提到】 : \sum_{i} -2w_i/d dw_i + 1/2 sum_i -2/d dt = -2/d W_tdW_t - dt : 请问最后一项里面的 1/d 哪里去了, 不应该是 1/d dt 吗?
|
s*****e 发帖数: 20 | 13 谢谢,我懂了
【在 x******a 的大作中提到】 : first order derivative w.r.t. x_i is \partial_i{u} =-2x_i/; : second order derivative w.r.t. x_i and x_j is : \partial_{ij}{u}= \delta_{ij} -2/d; : u(W_0) =u(0)= R^2/d; : du(W_t)=\sum_{i}\partial_{i=1}^{d}{u}dw_i +1/2\sum_{i=1}^{d} : \partial_{ii}{u : }dt = \sum_{i} -2w_i/d dw_i + 1/2 sum_i -2/d dt : =-2/d W_tdW_t - dt : u(W_t)= u(W_0) + \int_0^t du =R^2/d -t -2/d \int_0^t W_s dW_s.
|
L**********u 发帖数: 194 | 14 1/dW_t^2-t is a martingale and the integrand should be interpreted as
2/d \sum_{s=1}^d W_s dW_s.
In Riemann Geometry, we always omit the sum notation by Einstein summation
convention |