由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Quant版 - Question from chimbo's onsite面经
相关主题
大家来讨论chimbo大牛的几道题吧.[合集] 如何用European digital去hedge American digital?
问一道题目 包子酬谢!关于digital option的题目
求期望值 (转载)讨论个关于option的问题吧~
借人气问题[合集] brainteaser?
昨天的一道题[合集] 有人可以形象的解释一下为什么ATM的American Digital Option是2
请教一道题的解法[合集] Interview question for Quant to share-2, please discuss and
一道关于两倍年龄的题目谁知道答案, 看你算得快马?
[合集] 请教个digital option的问题Permno, cusip
相关话题的讨论汇总
话题: sum话题: mod话题: i10话题: replace话题: nine
进入Quant版参与讨论
1 (共1页)
c**********e
发帖数: 2007
1
How to solve this problem?
7. Three nine digits number e,f,and g. If we replace f_i with e_i they the
new nine digites can be divided by 7, for all i. Same happens if we replace
g_i with f_i,prove that g_i-e_i==0 mod 7 for all i.
l*********t
发帖数: 89
2
同问。有没有牛人出来指点一下啊?
即使没有最终答案,说说思路也好,大家一起讨论。多谢了!

replace

【在 c**********e 的大作中提到】
: How to solve this problem?
: 7. Three nine digits number e,f,and g. If we replace f_i with e_i they the
: new nine digites can be divided by 7, for all i. Same happens if we replace
: g_i with f_i,prove that g_i-e_i==0 mod 7 for all i.

w******g
发帖数: 313
3
这不显然么。。考虑f的第i位,和e的第i位交换以后f能被7整除,和j的第i位交换以后
f能被7整除,所以(e_i-g_i)*10e7是7的倍数,for all i
x******a
发帖数: 6336
4
e_i+\sum_{ j \ne i} f_i == 0 mod 7 for all i=1, 2, ..., 9,
f_i +\sum_{j \ne i} g_i == 0 mod 7 for all i=1, 2, ..., 9.
=> (sum up)
\sum e_i + \sum f_i == 0 mod 7.
\sum f_i + \sum g_i == 0 mod 7.
e_i== -\sum f_j + f_i == \sum g_j + f_i == g_i mod 7.
c**********e
发帖数: 2007
5
The original problem says "Same happens if we replace g_i with f_i". I think
it means the new G is divisable by 7.
I guess you misunderstood the original problem. Otherwise the problem was
too easy.

【在 w******g 的大作中提到】
: 这不显然么。。考虑f的第i位,和e的第i位交换以后f能被7整除,和j的第i位交换以后
: f能被7整除,所以(e_i-g_i)*10e7是7的倍数,for all i

x******a
发帖数: 6336
6
e_i10^i + \sum_{j \ne i}f_j10^j==0 mod 7. ------1
f_i10^i + \sum_{j \ne i}g_j10^j==0 mod 7. ------2
==> (sum up 1 and 2 separately)
\sum e_i10^i +\sum f_i 10^i==0 mod 7 ------------3
\sum f_i10^i +\sum g_i 10^i==0 mod 7 ------------4
==>
e_i10^i== -\sum f_j 10^j +f_i 10^i (b/c 1)
==\sum g_j 10^j + f_i10^i (b/c 4)
==g_i10^i mod 7. (b/c 2)
It follows 7|e_i-g_i for each i since 7 is prime and 7 doesn't divide any 10
^i.

replace

【在 c**********e 的大作中提到】
: How to solve this problem?
: 7. Three nine digits number e,f,and g. If we replace f_i with e_i they the
: new nine digites can be divided by 7, for all i. Same happens if we replace
: g_i with f_i,prove that g_i-e_i==0 mod 7 for all i.

1 (共1页)
进入Quant版参与讨论
相关主题
Permno, cusip昨天的一道题
问一道编程题请教一道题的解法
interview question (math)一道关于两倍年龄的题目
Survey:what's your favorite series to compute Pi?[合集] 请教个digital option的问题
大家来讨论chimbo大牛的几道题吧.[合集] 如何用European digital去hedge American digital?
问一道题目 包子酬谢!关于digital option的题目
求期望值 (转载)讨论个关于option的问题吧~
借人气问题[合集] brainteaser?
相关话题的讨论汇总
话题: sum话题: mod话题: i10话题: replace话题: nine