由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Quant版 - MS 2nd 电面题: Sin(x)/x 积分
相关主题
af0215面经中的一道题问个随机积分的问题
○○○ 求证一个随机积分的收敛性 ○○○Is this true?
一道概率题[合集] Long Term Capital Management
面经brainteaser两道老题
[合集] 一个弱问题:What does Brownian Motion converge to?一道题(math)
问一个convergence of random variables的问题[合集] 科普一下随机微积分
[合集] 一道算法题Conditional correlation problem
Matrix questionVIX mature 时, future 的价格 和 VIX index converge 吗?
相关话题的讨论汇总
话题: inf话题: int话题: sin话题: dx话题: integral
进入Quant版参与讨论
1 (共1页)
z*****n
发帖数: 165
1
\int_-\inf^\inf Sin(x)/x dx
J*****n
发帖数: 4859
p****u
发帖数: 2596
3
尽是这种8辈子用不到的题目。

【在 z*****n 的大作中提到】
: \int_-\inf^\inf Sin(x)/x dx
J****8
发帖数: 117
4
请问楼主二面都问了什么?
C++? 算法? 随机 ? BT ?
多谢?
r*******y
发帖数: 1081
5
我怎么还没有想出来? 只知道 \int_0^\inf sin(x) / x dx 是收敛的,
可以用 alternating series theorem证明收敛性。
其他的难道能求出 antiderivative?

【在 z*****n 的大作中提到】
: \int_-\inf^\inf Sin(x)/x dx
b*******e
发帖数: 86
6
Dirichlet integral

【在 r*******y 的大作中提到】
: 我怎么还没有想出来? 只知道 \int_0^\inf sin(x) / x dx 是收敛的,
: 可以用 alternating series theorem证明收敛性。
: 其他的难道能求出 antiderivative?

r*******y
发帖数: 1081
7
sorry what is dirichlet integral ? I know I can google. but I just want to
think about it.

【在 b*******e 的大作中提到】
: Dirichlet integral
z*****n
发帖数: 165
8
上来问了几个Derivative pricing的问题,后来主要是一些概率的小题;版上都出现过
;还问了几
个积分、C++的一些基本概念。

【在 J****8 的大作中提到】
: 请问楼主二面都问了什么?
: C++? 算法? 随机 ? BT ?
: 多谢?

z*****n
发帖数: 165
9
我当时是用复积分算的:计算 e^(ix)/x 积分的虚部;积分线在实轴上;由于实轴过奇
点,所以要shift: x-> x-iu, 留数定理后让u->0
e**********n
发帖数: 359
10
The answer depends on the sign of u if you use the residue theorem. However
thinking of real numbers only,
use the substitution
1/x -> \int_0^\infty e^{-xy} dy
the new 2D integral is easy to evaluate.

【在 z*****n 的大作中提到】
: 我当时是用复积分算的:计算 e^(ix)/x 积分的虚部;积分线在实轴上;由于实轴过奇
: 点,所以要shift: x-> x-iu, 留数定理后让u->0

相关主题
问一个convergence of random variables的问题问个随机积分的问题
[合集] 一道算法题Is this true?
Matrix question[合集] Long Term Capital Management
进入Quant版参与讨论
p****q
发帖数: 149
11
请问lz面的是哪个组?
a*********r
发帖数: 139
12
Many ways to evaluate this integral. I'd love to use complex analysis. It's
a typical example in complex analysis. Just deform the contour integral.
t*******g
发帖数: 373
13
仅此一题?!?!

【在 z*****n 的大作中提到】
: \int_-\inf^\inf Sin(x)/x dx
B****n
发帖数: 11290
14
說真的 這個要是沒看過類似的做法 決大多數人是想破頭也想不出來的
但如果你是數學系的 大學里至少就看過兩三種不同的做法

【在 r*******y 的大作中提到】
: 我怎么还没有想出来? 只知道 \int_0^\inf sin(x) / x dx 是收敛的,
: 可以用 alternating series theorem证明收敛性。
: 其他的难道能求出 antiderivative?

r*******y
发帖数: 1081
15
Still something confusing. Using residual theorem we can show that
\int_{-inf}^{inf} e^{ix} / x dx = i* PI so we can have
\int_{-inf}^{inf} sin(x) / x dx =PI
but we also can have
\int_{-inf}^{inf} cos(x) / x dx = 0 which is very confusing
since \int_{-inf}^{inf} cos(x) / x dx will diverge
Just look at \int_{0}^{1} cos(x) / x dx which is infinity

【在 z*****n 的大作中提到】
: 我当时是用复积分算的:计算 e^(ix)/x 积分的虚部;积分线在实轴上;由于实轴过奇
: 点,所以要shift: x-> x-iu, 留数定理后让u->0

a*********r
发帖数: 139
16
Based on your answer, your contour is obviously wrong. Note 0 is a
singularity of the function f(z)=\frac{e^{iz}}{z}, you have to play a
typical trick to around 0 to get around this difficulty. If you know Jordan'
s lemma, then the remaining is trivial. Good luck!

【在 r*******y 的大作中提到】
: Still something confusing. Using residual theorem we can show that
: \int_{-inf}^{inf} e^{ix} / x dx = i* PI so we can have
: \int_{-inf}^{inf} sin(x) / x dx =PI
: but we also can have
: \int_{-inf}^{inf} cos(x) / x dx = 0 which is very confusing
: since \int_{-inf}^{inf} cos(x) / x dx will diverge
: Just look at \int_{0}^{1} cos(x) / x dx which is infinity

r*******y
发帖数: 1081
17
So what is the answer to
\int_{-inf}^{inf} e^{ix} / x dx ?
thanks.

Jordan'

【在 a*********r 的大作中提到】
: Based on your answer, your contour is obviously wrong. Note 0 is a
: singularity of the function f(z)=\frac{e^{iz}}{z}, you have to play a
: typical trick to around 0 to get around this difficulty. If you know Jordan'
: s lemma, then the remaining is trivial. Good luck!

z*****n
发帖数: 165
18
Due to the ambiguity, the notation in the problem really means:
\int_\-inf^\-epsilon + \int_\epsilon^\inf
and then take limit of \epsilon -> 0+
Which is the "v.p." value of integration.
Under this definition, there is no problem of cos(x)/x, because it's an
odd function, so both parts cancel out after integration.

【在 r*******y 的大作中提到】
: Still something confusing. Using residual theorem we can show that
: \int_{-inf}^{inf} e^{ix} / x dx = i* PI so we can have
: \int_{-inf}^{inf} sin(x) / x dx =PI
: but we also can have
: \int_{-inf}^{inf} cos(x) / x dx = 0 which is very confusing
: since \int_{-inf}^{inf} cos(x) / x dx will diverge
: Just look at \int_{0}^{1} cos(x) / x dx which is infinity

x******a
发帖数: 6336
19
sinx/x没问题
cosx/x问题很大

【在 z*****n 的大作中提到】
: Due to the ambiguity, the notation in the problem really means:
: \int_\-inf^\-epsilon + \int_\epsilon^\inf
: and then take limit of \epsilon -> 0+
: Which is the "v.p." value of integration.
: Under this definition, there is no problem of cos(x)/x, because it's an
: odd function, so both parts cancel out after integration.

r*******y
发帖数: 1081
20
I agree on this.

【在 x******a 的大作中提到】
: sinx/x没问题
: cosx/x问题很大

相关主题
brainteaser两道老题Conditional correlation problem
一道题(math)VIX mature 时, future 的价格 和 VIX index converge 吗?
[合集] 科普一下随机微积分About theta
进入Quant版参与讨论
r*******y
发帖数: 1081
21
a little more clear now.
using residual theorem, we can show \int_{-inf}^{-\epsilon} sin(x) / x dx
+ \int_{\epsilon}{inf} sin(x) / x dx (in the sense of v.p.)---> PI as
\epsilon ---> 0. But we also can show \int_{-inf}{inf} sin(x) / x dx
converge
so we can claim \int_{-inf}{inf} sin(x) / x dx = PI.

【在 z*****n 的大作中提到】
: Due to the ambiguity, the notation in the problem really means:
: \int_\-inf^\-epsilon + \int_\epsilon^\inf
: and then take limit of \epsilon -> 0+
: Which is the "v.p." value of integration.
: Under this definition, there is no problem of cos(x)/x, because it's an
: odd function, so both parts cancel out after integration.

a*********r
发帖数: 139
22
The question should be stated precisely as an improper integral. If you read
my last post, you have a removable singularity at 0, you cann't take that
contour.
For evaluation of the well-known integral, you can consult any standard
textbook on complex analysis, e.g. Ahlfors p158 or Conway 115.
Good luck!

【在 r*******y 的大作中提到】
: So what is the answer to
: \int_{-inf}^{inf} e^{ix} / x dx ?
: thanks.
:
: Jordan'

w******i
发帖数: 503
23
what is the purpose this kind of question ? what if you have not
studied complex analysis?
s****p
发帖数: 19
24
Laplace transformation.
Let F(y)=\int_0^\inf e^{-yx} sin(x)/x dx then
-F'(y)=\int_0^\inf e^{-yx}sin(x) dx, which has close form.

【在 z*****n 的大作中提到】
: \int_-\inf^\inf Sin(x)/x dx
L*****k
发帖数: 327
25
Good post.
另外,complex analysis有结论:对于coutour积分具有形式f(z)/(z-a)(contour上有
一个奇点a),可以直接转化为计 f(a)*\pi*j,在满足一些regular条件下,比如f(z)
is analytic inside the contour

read

【在 a*********r 的大作中提到】
: The question should be stated precisely as an improper integral. If you read
: my last post, you have a removable singularity at 0, you cann't take that
: contour.
: For evaluation of the well-known integral, you can consult any standard
: textbook on complex analysis, e.g. Ahlfors p158 or Conway 115.
: Good luck!

k***n
发帖数: 997
26
查了一下,是书上例题
\int_-inf^inf \frac{sin x}{x} converges not absolute
\int_c^inf \frac{cos x}{x} converges not absolute, where c>0
c <= 0 diverges.
1 (共1页)
进入Quant版参与讨论
相关主题
VIX mature 时, future 的价格 和 VIX index converge 吗?[合集] 一个弱问题:What does Brownian Motion converge to?
About theta问一个convergence of random variables的问题
请教这个统计题有这个结论吗?[合集] 一道算法题
发个概率题Matrix question
af0215面经中的一道题问个随机积分的问题
○○○ 求证一个随机积分的收敛性 ○○○Is this true?
一道概率题[合集] Long Term Capital Management
面经brainteaser两道老题
相关话题的讨论汇总
话题: inf话题: int话题: sin话题: dx话题: integral