由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Quant版 - 问个排列组合题?
相关主题
问一道排列题[合集] 面试问题 (转载)
请教道排列组合题 有包子[合集] A brain teaser question
请教一道排列组合题。[合集] interview question (programming)
问一个排列组合题目Ranking of the MFE
一道看起来很简单的排列组合问题Indurstries Ranking
问个有关排列的题真心请教如何准备quant面试
问个算法题[合集] Brainteaser question
【Stats】问个经典概率题[合集] 证明题(级数求和)
相关话题的讨论汇总
话题: sum话题: efg话题: picking话题: number话题: elements
进入Quant版参与讨论
1 (共1页)
v********w
发帖数: 136
1
八匹马,考虑tie,有多少种比赛结果?
p******5
发帖数: 138
2
If there are i ranks for a final result, then the number of different
results is C(7, i-1), that is, the number of the different way of picking i-
1 elements from the set of 7 elements.
So the total number of results is \sum^8_{i = 1} C(7, i-1).
l*******1
发帖数: 113
3
what kind of ties do you allow?
for abcdefgh
can u have random ties like ab, cd, efg, h? and abc, de, fgh?
G********d
发帖数: 10250
4
in your computation
ab cd efg
cd ab efg
are only counted once.

If there are i ranks for a final result, then the number of different
results is C(7, i-1), that is, the number of the different way of picking i-
1 elements from the set of 7 elements.
So the total number of results is \sum^8_{i = 1} C(7, i-1).

【在 p******5 的大作中提到】
: If there are i ranks for a final result, then the number of different
: results is C(7, i-1), that is, the number of the different way of picking i-
: 1 elements from the set of 7 elements.
: So the total number of results is \sum^8_{i = 1} C(7, i-1).

p******5
发帖数: 138
5
You are right.
How about \sum^8_{i = 1} C(7, i-1)*i! ?

picking i-

【在 G********d 的大作中提到】
: in your computation
: ab cd efg
: cd ab efg
: are only counted once.
:
: If there are i ranks for a final result, then the number of different
: results is C(7, i-1), that is, the number of the different way of picking i-
: 1 elements from the set of 7 elements.
: So the total number of results is \sum^8_{i = 1} C(7, i-1).

G********d
发帖数: 10250
6
then
ab cd efg
ba cd efg
are both counted
my answer
\sum_{n=1}^8 \sum_{i=0}^{n-1} (n-i)^8(-1)^i n!/(i!(n-i)!)

You are right.
How about \sum^8_{i = 1} C(7, i-1)*i! ?
picking i-

【在 p******5 的大作中提到】
: You are right.
: How about \sum^8_{i = 1} C(7, i-1)*i! ?
:
: picking i-

b******n
发帖数: 637
7
有表达式,但是求不出close form...
v********w
发帖数: 136
8
说说看?
楼上的能不能解释一下你的式子含义?

【在 b******n 的大作中提到】
: 有表达式,但是求不出close form...
1 (共1页)
进入Quant版参与讨论
相关主题
[合集] 证明题(级数求和)一道看起来很简单的排列组合问题
[合集] 求教一个问题 (转载)问个有关排列的题
old prob question -- # of boys and girls问个算法题
一道题目【Stats】问个经典概率题
问一道排列题[合集] 面试问题 (转载)
请教道排列组合题 有包子[合集] A brain teaser question
请教一道排列组合题。[合集] interview question (programming)
问一个排列组合题目Ranking of the MFE
相关话题的讨论汇总
话题: sum话题: efg话题: picking话题: number话题: elements