由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Quant版 - 这个期权公式可化简吗?
相关主题
[合集] interest rate 中的HJM模型bloomger interview 实在忍无可忍向阿三 发飙经过
Paradox: B-S equation predicted stock price growth rate VS economy growthA Brownian Motion question
面试题 求Delta一个关于lognormal的简单问题
问几个 Black Scholes 的基本假设问题问一道面试题 brownian motion的
Mark Joshi红皮书的一道题问一个问题American Put option
红皮书问题2.6 (Pp.17 & 31)急问: 如何用定价期权的方法来给股票定价
【Option Pricing】问题请教GS Interview question
Double Barrier 怎么超级麻烦?发个高盛entry-level quant的面经
相关话题的讨论汇总
话题: option话题: 2t话题: 1t话题: s2话题: s1
进入Quant版参与讨论
1 (共1页)
c**********e
发帖数: 2007
1
Suppose two stocks S1 and S2 each follows its GBM, with the instaneous
correlation of the two brownian motions rho.
An option pays max(S_{1T}-K, S_{2T}-K, 0) at time T. The price of the option
should be exp(-rT)*E[max(S_{1T}-K, S_{2T}-K, 0)]. This is an analytical
form as log(S1) and log(S2) has joint normal distribution.
我的问题是,这个期权价格能否简化。
m******g
发帖数: 12
2
the price is the sum of an ordinary call option price and an exchange option
price (Margrabe formula).
z****i
发帖数: 406
3
K=0的话,有closed form solution, google 'Margrabe formula'.
If K is not 0, there is no closed form solution. check out 'pricing and
hedging spread options in a log-normal model' and following papers by Rene
Carmona and Valdo Durrleman.
c**********e
发帖数: 2007
4
谢谢。看来,二维正则分布在扇形上的积分,只有扇形圆心与分布中心重合时才可以简
化。

【在 z****i 的大作中提到】
: K=0的话,有closed form solution, google 'Margrabe formula'.
: If K is not 0, there is no closed form solution. check out 'pricing and
: hedging spread options in a log-normal model' and following papers by Rene
: Carmona and Valdo Durrleman.

z****i
发帖数: 406
5
好高深的解释啊,呵呵。
我是硬算的,发现要对正态分布的cdf积分,所以没有closed form的解。
如果是K=0的话,用change of numeraire,然后套Black Scholes公式,很容易就把结
果写出来了。

【在 c**********e 的大作中提到】
: 谢谢。看来,二维正则分布在扇形上的积分,只有扇形圆心与分布中心重合时才可以简
: 化。

l***u
发帖数: 91
6
没有显示解 半显示解是对BS进行积分

option

【在 c**********e 的大作中提到】
: Suppose two stocks S1 and S2 each follows its GBM, with the instaneous
: correlation of the two brownian motions rho.
: An option pays max(S_{1T}-K, S_{2T}-K, 0) at time T. The price of the option
: should be exp(-rT)*E[max(S_{1T}-K, S_{2T}-K, 0)]. This is an analytical
: form as log(S1) and log(S2) has joint normal distribution.
: 我的问题是,这个期权价格能否简化。

p*****k
发帖数: 318
7
probably should read the reference by zhucai first before
i comment, but i fail to see the relevance of the
spread option here.
in any case, a call on either the maximum (or minimum)
of two stocks can be expressed using bivariate normal c.d.f..
see e.g., Stulz (1982)
http://dx.doi.org/10.1016/0304-405X(82)90011-3
similar to 1d normal c.d.f., good algorithms exist to
evaluate it numerically:
http://www.math.wsu.edu/faculty/genz/papers/bvnt/bvnt.html
z****i
发帖数: 406
8
sorry i just realized i misread the problem, i thought the payoff was max(S_
1-S_2-K, 0)

【在 p*****k 的大作中提到】
: probably should read the reference by zhucai first before
: i comment, but i fail to see the relevance of the
: spread option here.
: in any case, a call on either the maximum (or minimum)
: of two stocks can be expressed using bivariate normal c.d.f..
: see e.g., Stulz (1982)
: http://dx.doi.org/10.1016/0304-405X(82)90011-3
: similar to 1d normal c.d.f., good algorithms exist to
: evaluate it numerically:
: http://www.math.wsu.edu/faculty/genz/papers/bvnt/bvnt.html

1 (共1页)
进入Quant版参与讨论
相关主题
发个高盛entry-level quant的面经Mark Joshi红皮书的一道题
问一个随机积分的问题红皮书问题2.6 (Pp.17 & 31)
Question on bond price with instaneous IR【Option Pricing】问题请教
问个关于volatility的问题Double Barrier 怎么超级麻烦?
[合集] interest rate 中的HJM模型bloomger interview 实在忍无可忍向阿三 发飙经过
Paradox: B-S equation predicted stock price growth rate VS economy growthA Brownian Motion question
面试题 求Delta一个关于lognormal的简单问题
问几个 Black Scholes 的基本假设问题问一道面试题 brownian motion的
相关话题的讨论汇总
话题: option话题: 2t话题: 1t话题: s2话题: s1