由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Quant版 - 一道很老的很简单的题
相关主题
合集 Questions Summary问道 面试题 (转载)
问两道probability的题ito积分
platykurtic 有可能是fat tail吗?one question urgent
how to calculate E[X|X]?【Stochastic Integral】 \int_0^T W_tdt
what distribution is this?calculate an integral in python
integral问一道stochastic
[合集] how to calculate this? (a math question)请问关于一个分部积分的问题
请教一个stochastic integral的问题[合集] What's the integration of
相关话题的讨论汇总
话题: int话题: dx话题: dy话题: lesser话题: two
进入Quant版参与讨论
1 (共1页)
s****n
发帖数: 41
1
sorry, 很老的一道题,我被卡住了,怎么都想不通为什么我的方法不对,能帮我解释
一下嘛
“What is the average of the lesser of two random numbers from 0 to 1? ”
我用的方法为:
E[lesser of the two]=E[X|Y]*P(X 其中E[X|Y]=int(0_1)int(0_y)x*dx*dy=1/6,
为什么答案是1/3呢?
A****s
发帖数: 129
2
the integration is only on half of the prob space.
so you should have the integration on the whole prob space as 1/6*2=1/3, I
guess
geometrically you have a tetrahedron whose volume is 1/6
but the base area is only 1/2

【在 s****n 的大作中提到】
: sorry, 很老的一道题,我被卡住了,怎么都想不通为什么我的方法不对,能帮我解释
: 一下嘛
: “What is the average of the lesser of two random numbers from 0 to 1? ”
: 我用的方法为:
: E[lesser of the two]=E[X|Y]*P(X: 其中E[X|Y]=int(0_1)int(0_y)x*dx*dy=1/6,
: 为什么答案是1/3呢?

p*****k
发帖数: 318
3
swchen, for your approach, when calculating E[X|Y],
you need to normalize the probability:
E[X|Y]=int(0_1)dy[int(0_y)dx*x] / int(0_1)dy[int(0_y)dx*1] =1/3
Allens has also given a very nice geometrical pic above.
b********u
发帖数: 63
4
you confused E[X|Y] and E[X|Y=y]. the former is still a random variable.

【在 s****n 的大作中提到】
: sorry, 很老的一道题,我被卡住了,怎么都想不通为什么我的方法不对,能帮我解释
: 一下嘛
: “What is the average of the lesser of two random numbers from 0 to 1? ”
: 我用的方法为:
: E[lesser of the two]=E[X|Y]*P(X: 其中E[X|Y]=int(0_1)int(0_y)x*dx*dy=1/6,
: 为什么答案是1/3呢?

h**6
发帖数: 4160
5
My solution:
E[lesser of the two] = int(0_1)dy{[int(0_y)dx*x] + int(y_1)dx*y]} =1/3
k*******d
发帖数: 1340
6
This is how I want to do it. Essentially the same as han6
We actually want to compute :
E[XI_{X<=Y} + YI_{Y<=X}], where I_{condition} is the indicator function
Then, simply use the definition
\int_0^1 (\int_0^y x dx + y \int_y^1 dx) dy
1 (共1页)
进入Quant版参与讨论
相关主题
[合集] What's the integration ofwhat distribution is this?
today's interviewintegral
how much would you ask for?[合集] how to calculate this? (a math question)
看看这道题(probability)请教一个stochastic integral的问题
合集 Questions Summary问道 面试题 (转载)
问两道probability的题ito积分
platykurtic 有可能是fat tail吗?one question urgent
how to calculate E[X|X]?【Stochastic Integral】 \int_0^T W_tdt
相关话题的讨论汇总
话题: int话题: dx话题: dy话题: lesser话题: two