由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Programming版 - 问一个NN训练模型输入问题
相关主题
word2vec 中skip gram 问题请教Remove elements from multiple vectors in C++
发现的最简单的deep learning教程能帮我看看Ruby的这道题吗?
CNN 能对输入的image做patch normalization么?[合集] 很无聊的做了两道code jam
马工能转数据分析师吗?业界新闻:Donald E. Knuth明天要宣布重大消息
What's the efficient way to merge two BST?iTex!!
I like this one.一道MS面试题 (转载)
有没有做sentiment analysis的,求思路linux, find command question
encode high cardinality categorical featuresHow to concatenate two .tar.gz files
相关话题的讨论汇总
话题: 20话题: nn话题: vector话题: 300
进入Programming版参与讨论
1 (共1页)
s********k
发帖数: 6180
1
比方说我有一个sentence 20个words,然后做Word2vec 每个word到300 dimension空间
,如果做NN得训练输入时候,是concatenate成一个1*6000的vector,还是输入20*300的
matrix合适
m****o
发帖数: 182
2
取决于你想用什么类型的网络,如果是CNN的话,那就输入矩阵做卷积。如果你做
entity name resolution, 一般取一个sliding window取context,然后用一个普通的
MLP做训练,那么一个扁平的单向量就可以了。
m********5
发帖数: 17667
3
Normally 20*300 and feed to 1D conv. This means your data point is in 300D
space. And you will process the text word by word.
If you do concatenate to a 6000D vector, you will treat the text similar as
20-gram and arbitrarily define your 20-gram features as this 6000D vector,
which has been seen in many literatures. You can also do other merging
method like averaging, max, etc. This means each 20 words will be a single
data point in the space.
It does not make too much sense to me, if you concatenate and treat it as
6000 long 1D vector though. This will means you treat all 300 features as
similar features and you will convolve over different features the same as
over different words. But with proper stride and filter-length it pretty
much gives you the same result as 20*300 in some cases. It just a very
twisted way to think.

【在 s********k 的大作中提到】
: 比方说我有一个sentence 20个words,然后做Word2vec 每个word到300 dimension空间
: ,如果做NN得训练输入时候,是concatenate成一个1*6000的vector,还是输入20*300的
: matrix合适

1 (共1页)
进入Programming版参与讨论
相关主题
How to concatenate two .tar.gz filesWhat's the efficient way to merge two BST?
两个C的#define问题I like this one.
如何计算卷积?有没有做sentiment analysis的,求思路
问两道微软的email笔试题目encode high cardinality categorical features
word2vec 中skip gram 问题请教Remove elements from multiple vectors in C++
发现的最简单的deep learning教程能帮我看看Ruby的这道题吗?
CNN 能对输入的image做patch normalization么?[合集] 很无聊的做了两道code jam
马工能转数据分析师吗?业界新闻:Donald E. Knuth明天要宣布重大消息
相关话题的讨论汇总
话题: 20话题: nn话题: vector话题: 300