o*******w 发帖数: 349 | 1 下面是众所周知的:
X_t 是一个时间函数, 推而广之(generalize), 就是个随机过程
X_t =: X_p(t) where p(t) 决定了 X_t (在 t 时刻)的概率分布, 比如均值,方差
. . .
我现在需要这样一种推广,X_t 不是随机的, 是确定的,但不是一个值 (一个值情况
就是时间函数X(t)),
而是一个函数:
X_t = F(x)_{X1, X2, ...X(t-1)}
这个函数跟过去有关。由于过去的过程是随机的,所以决定这个函数的参数是随机的;
比如
X_t(x) = a_{X1, X2, ...} *x + b_{X1, X2, ...}*x^2 (确定的情形就是 a*x
+b*x^2)
a 和 b 是由随机的过去确定的。
有没有人知道这在数学中叫什么? "stochastic process function"? 是不是这就是随
机微分方程的解所描述的object. 我不知道叫啥.
当然,如果给定 x, 这就是一个普通的随机过程。不过我的project 中
a_{X1, X2, ...} 和 b_{X1, X2, ...} 是知道的,给定 X1, X2, ...X(t-1). 所以似
不宜作为普通的随机过程对待。 | o*******w 发帖数: 349 | 2 下面是众所周知的:
X_t 是一个时间函数, 推而广之(generalize), 就是个随机过程
X_t =: X_p(t) where p(t) 决定了 X_t (在 t 时刻)的概率分布, 比如均值,方差
. . .
我现在需要这样一种推广,X_t 不是随机的, 是确定的,但不是一个值 (一个值情况
就是时间函数X(t)),
而是一个函数:
X_t = F(x)_{X1, X2, ...X(t-1)}
这个函数跟过去有关。由于过去的过程是随机的,所以决定这个函数的参数是随机的;
比如
X_t(x) = a_{X1, X2, ...} *x + b_{X1, X2, ...}*x^2 (确定的情形就是 a*x
+b*x^2)
a 和 b 是由随机的过去确定的。
有没有人知道这在数学中叫什么? "stochastic process function"? 是不是这就是随
机微分方程的解所描述的object. 我不知道叫啥.
当然,如果给定 x, 这就是一个普通的随机过程。不过我的project 中
a_{X1, X2, ...} 和 b_{X1, X2, ...} 是知道的,给定 X1, X2, ...X(t-1). 所以似
不宜作为普通的随机过程对待。 | o*******w 发帖数: 349 | 3 知道了,这是某一个随机偏微分方程(SPDE)的解;就是一个随机过程(函数)。
差
【在 o*******w 的大作中提到】 : 下面是众所周知的: : X_t 是一个时间函数, 推而广之(generalize), 就是个随机过程 : X_t =: X_p(t) where p(t) 决定了 X_t (在 t 时刻)的概率分布, 比如均值,方差 : . . . : 我现在需要这样一种推广,X_t 不是随机的, 是确定的,但不是一个值 (一个值情况 : 就是时间函数X(t)), : 而是一个函数: : X_t = F(x)_{X1, X2, ...X(t-1)} : 这个函数跟过去有关。由于过去的过程是随机的,所以决定这个函数的参数是随机的; : 比如
|
|