由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Mathematics版 - smallest a+b+c
相关主题
问个初等数学题求大牛帮忙解题,特大包子答谢!
A question in Analysis求助:证明一个初等不等式
能问大家几个数值分析的问题吗?Re: 一个不等式的证明
Re: A probability problem哪位大牛给解释一下“欧了”公式啊? (转载)
一个"简单“的不等式求教PDE Maxwell Equations数学问题
问一个矩阵不等式的问题. 在线等面试题 - 数学?
问个关于schwarz inequality 的简单问题?College Algebra by Larson & Hostetler
数学老师帮我证明一道积分不等式的题。矩阵趣题 (转载)
相关话题的讨论汇总
话题: smallest话题: 10话题: positive话题: integers话题: therefore
进入Mathematics版参与讨论
1 (共1页)
h*****y
发帖数: 66
1
问这里的高手们一个问题。万一是个简单的问题,也请高手们不要笑话
find the smallest possible value of a+b+c where a, b, and c are different
positive integers that satisfy the following equation:
1/a + 1/b + 1/c = 7/10
请问用什么方法呢?
h*****y
发帖数: 66
2
谢谢,终于有人指点了。
这个问题要求,a,b,c是三个不同的正整数。 这个条件如何加进去呢? 再次谢谢
n*******l
发帖数: 2911
3
If a,b,c can be any positive number, then
7/10 = 1/a +1/b+1/c >= 3 (abc)^{-1/3}.
(abc)^{1/3}>= 30/7.
and
a+b+c >= 3(abc)^{1/3} >= 90/7.
Equality holds when a=b=c=30/7.
Since you require a,b,c to be positive integers, I
would just stare at 1/a+1/b+1/c = 7/10 and
conclude that {a,b,c} = {10,10,2}. Then
a+b+c=22.

【在 h*****y 的大作中提到】
: 问这里的高手们一个问题。万一是个简单的问题,也请高手们不要笑话
: find the smallest possible value of a+b+c where a, b, and c are different
: positive integers that satisfy the following equation:
: 1/a + 1/b + 1/c = 7/10
: 请问用什么方法呢?

n*******e
发帖数: 2213
4
1/2 + 1/5 = 0.7 ->2 and 5 do not appear simutaneously.
5 has to appear.
therefore, we are left with [3,4,5], [3,5,6], and [4,5,6], so and so on.
among them, [3,5,6] works.

【在 h*****y 的大作中提到】
: 问这里的高手们一个问题。万一是个简单的问题,也请高手们不要笑话
: find the smallest possible value of a+b+c where a, b, and c are different
: positive integers that satisfy the following equation:
: 1/a + 1/b + 1/c = 7/10
: 请问用什么方法呢?

h*****y
发帖数: 66
5
多谢大伙的帮忙!

【在 n*******e 的大作中提到】
: 1/2 + 1/5 = 0.7 ->2 and 5 do not appear simutaneously.
: 5 has to appear.
: therefore, we are left with [3,4,5], [3,5,6], and [4,5,6], so and so on.
: among them, [3,5,6] works.

n*******l
发帖数: 2911
6
有道理,应该从最小的开始一个个尝试。对于一般情形,看来应该编个程序穷举。

【在 n*******e 的大作中提到】
: 1/2 + 1/5 = 0.7 ->2 and 5 do not appear simutaneously.
: 5 has to appear.
: therefore, we are left with [3,4,5], [3,5,6], and [4,5,6], so and so on.
: among them, [3,5,6] works.

N******t
发帖数: 11
7
1/10+1/10+1/2 The only one?
s*****u
发帖数: 164
8
2, 6, 30
N******t
发帖数: 11
9
30 is too big
k*r
发帖数: 19
10
By Cauchy's Inequality, a + b + c > 3^2 *(10/7) = 12.8xxx
a + b + c >= 13.
Therefore the smallest triples are:
a = 4
b = 4
c = 5

【在 h*****y 的大作中提到】
: 问这里的高手们一个问题。万一是个简单的问题,也请高手们不要笑话
: find the smallest possible value of a+b+c where a, b, and c are different
: positive integers that satisfy the following equation:
: 1/a + 1/b + 1/c = 7/10
: 请问用什么方法呢?

z*********g
发帖数: 37
11
The problem requires distinct positive integers! 3, 5, 6 is the answer.
1 (共1页)
进入Mathematics版参与讨论
相关主题
矩阵趣题 (转载)一个"简单“的不等式
any general solution问一个矩阵不等式的问题. 在线等
election problem问个关于schwarz inequality 的简单问题?
Is there such a "measure" on integers?数学老师帮我证明一道积分不等式的题。
问个初等数学题求大牛帮忙解题,特大包子答谢!
A question in Analysis求助:证明一个初等不等式
能问大家几个数值分析的问题吗?Re: 一个不等式的证明
Re: A probability problem哪位大牛给解释一下“欧了”公式啊? (转载)
相关话题的讨论汇总
话题: smallest话题: 10话题: positive话题: integers话题: therefore