由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Mathematics版 - # local minima
相关主题
multivariate kernel density function求局部最小一个民科的今日
请问怎么最快的化简一个多项式?问个简单的问题
两个normal R.V. 相加还是normal吗?differential geometry
[分享]牛人整理的统计学教材 (转载)查一下美国本土得数学菲尔兹奖的人数你们会疯掉的 (转载)
Re: 20世纪数学两大光辉成就 :——Re: 本版没有数学气氛与本版的发文的丘成桐: 哈佛数学系150年 从三流学系到世界中心
漫谈扭结(五)问个stationary phase integration method
奇怪的拓扑问题(视频)问一个随机过程的问题
Superstring: Poincare对超弦的冲击 (转载)请问一个随机过程平稳性的问题
相关话题的讨论汇总
话题: minima话题: local话题: stationary话题: among话题: points
进入Mathematics版参与讨论
1 (共1页)
e*****u
发帖数: 27
1
Q: Among N stationary points, what is the upper bound (n local minima?
Is there any theorem related to this?
l********e
发帖数: 3632
2
Morse Theory.(for non-degenerate critical points)
e*****u
发帖数: 27
3
Thanks. I looked into it but totally got lost (since no background in
topology). Could anyone intuitively explain it a little bit?
Basically my question is:
I have 4th order univariate polynomial and thus 4 stationary (or critical)
points. But I am really interested in how many local minima at most. Is it
possible to have all 4 local minima?

【在 l********e 的大作中提到】
: Morse Theory.(for non-degenerate critical points)
l********e
发帖数: 3632
4
Definitely cannot be all minimum, there must be some minmax point(saddle
point) between two minmum.

【在 e*****u 的大作中提到】
: Thanks. I looked into it but totally got lost (since no background in
: topology). Could anyone intuitively explain it a little bit?
: Basically my question is:
: I have 4th order univariate polynomial and thus 4 stationary (or critical)
: points. But I am really interested in how many local minima at most. Is it
: possible to have all 4 local minima?

1 (共1页)
进入Mathematics版参与讨论
相关主题
请问一个随机过程平稳性的问题Re: 20世纪数学两大光辉成就 :——Re: 本版没有数学气氛与本版的发文的
拐点英语怎么说漫谈扭结(五)
问一个Markov Process的问题奇怪的拓扑问题(视频)
Parabolic equation收敛问题Superstring: Poincare对超弦的冲击 (转载)
multivariate kernel density function求局部最小一个民科的今日
请问怎么最快的化简一个多项式?问个简单的问题
两个normal R.V. 相加还是normal吗?differential geometry
[分享]牛人整理的统计学教材 (转载)查一下美国本土得数学菲尔兹奖的人数你们会疯掉的 (转载)
相关话题的讨论汇总
话题: minima话题: local话题: stationary话题: among话题: points