由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Mathematics版 - 问一个概率问题
相关主题
可以用MGF(moment generating function)方法求取非连续变量吗? (转载)integral question
问一个初级概率题standard normal distribution 的F(x)/f(x) 有什么表达式吗?
两个normal R.V. 相加还是normal吗?知道random process (X+Y) 和 X 的distribution, 如何得到 Y?
能否用MGF求解连续但非处处可导的函数请问这俩随机变量的关系
variable transformation problem..问一个基础的分布收敛问题,谢谢!
A question on T distribution问下这个函数能积分出来不?
a question about statistics (转载)请教:algebra VS. sigma algebra
X+Y pdf请教一个极限问题
相关话题的讨论汇总
话题: cdf话题: seris话题: mgf话题: sides话题: expansion
进入Mathematics版参与讨论
1 (共1页)
a******h
发帖数: 1183
1
在下面的等式中,T, A_i, B 是独立随机变量,其中A_i的CDF已知:A_i, i=1,.. 是
iid,且服从指数分布,参数为1。 B的CDF也已知,那T的CDF能求出来吗?
d****y
发帖数: 53
2
schematically (T is a discrete random variable; denote its prob's as p_T, T=
1,2,... \infinity)
compute the moment-generating-function on both sides, one gets
\sum_T=1^{\infinity} p_T [1/(1+u)]^T = MGF_of_B(u) = MGF_of_B( (1+u) -1 )
expanding both sides of the above equation as a power seris in y=(1+u) gives
you p_T.
Additional comments:
Interpretation of B: it is the arrival-time of the T-th event for a poisson
process.

【在 a******h 的大作中提到】
: 在下面的等式中,T, A_i, B 是独立随机变量,其中A_i的CDF已知:A_i, i=1,.. 是
: iid,且服从指数分布,参数为1。 B的CDF也已知,那T的CDF能求出来吗?

a******h
发帖数: 1183
3
Thank you.
Could you explain a bit more about getting the moment-generating-function
at the left hand side?

T=
gives
poisson

【在 d****y 的大作中提到】
: schematically (T is a discrete random variable; denote its prob's as p_T, T=
: 1,2,... \infinity)
: compute the moment-generating-function on both sides, one gets
: \sum_T=1^{\infinity} p_T [1/(1+u)]^T = MGF_of_B(u) = MGF_of_B( (1+u) -1 )
: expanding both sides of the above equation as a power seris in y=(1+u) gives
: you p_T.
: Additional comments:
: Interpretation of B: it is the arrival-time of the T-th event for a poisson
: process.

d****y
发帖数: 53
4
E[exp^{-ut}]=\int exp^{-t}exp^{-ut} \dt for an exponential dist. with rate=1
(your specification). This gives you the mgf on the lhs

【在 a******h 的大作中提到】
: Thank you.
: Could you explain a bit more about getting the moment-generating-function
: at the left hand side?
:
: T=
: gives
: poisson

a******h
发帖数: 1183
5
Thanks. I got this part now.
Regarding the expansion on both sides, do you mean using taylor expansion?
If yes, then the problem is that on the lhs, the result is expressed with a
power series in 1/y, (y=(1+u)), while on the rhs, it gives you a power seris
in y. This way, we cannot obtain the expression of P_T, right?

=1

【在 d****y 的大作中提到】
: E[exp^{-ut}]=\int exp^{-t}exp^{-ut} \dt for an exponential dist. with rate=1
: (your specification). This gives you the mgf on the lhs

d****y
发帖数: 53
6
think of it as a laurent expansion, not a taylor expansion: both negative
and positive powers on both sides must agree.

a
seris

【在 a******h 的大作中提到】
: Thanks. I got this part now.
: Regarding the expansion on both sides, do you mean using taylor expansion?
: If yes, then the problem is that on the lhs, the result is expressed with a
: power series in 1/y, (y=(1+u)), while on the rhs, it gives you a power seris
: in y. This way, we cannot obtain the expression of P_T, right?
:
: =1

a******h
发帖数: 1183
7
Is it possible to express the CDF of T with A and B explicitly?

【在 d****y 的大作中提到】
: think of it as a laurent expansion, not a taylor expansion: both negative
: and positive powers on both sides must agree.
:
: a
: seris

1 (共1页)
进入Mathematics版参与讨论
相关主题
请教一个极限问题variable transformation problem..
Intermediate value theorem for expectationsA question on T distribution
有用singular软件或者搞invariant polynomial theory的吗?a question about statistics (转载)
Expectations of normal variablesX+Y pdf
可以用MGF(moment generating function)方法求取非连续变量吗? (转载)integral question
问一个初级概率题standard normal distribution 的F(x)/f(x) 有什么表达式吗?
两个normal R.V. 相加还是normal吗?知道random process (X+Y) 和 X 的distribution, 如何得到 Y?
能否用MGF求解连续但非处处可导的函数请问这俩随机变量的关系
相关话题的讨论汇总
话题: cdf话题: seris话题: mgf话题: sides话题: expansion