g*********u 发帖数: 21 | 1 请各位给一个比较简单的证明:
均匀分布在[0,T)上的一随机变量D,和任意一实数a的和为D+a
证明 (D+a)mod T 也是一个均匀分布在[0,T)上的随机变量。
mod为取模运算。
从直觉上好像很明白,但是哪位可否给出一个证明呢?
比如 (D+a)mod T 的分布确实为一个均匀分布
谢谢各位!!! | s******h 发帖数: 539 | 2 Without loss of generality, we can assume that a is in [0, T),
then (D + a)mod T = (D + a)I{D + a < T} + (D + a - T) I{D + a >= T}
thus for any x in [0, T)
P((D + a)mod T < = x)
= P(D + a < T, D + a < = x) + P(0 < = D + a - T <= x)
Clearly, for x >= a, it equals
P(D < = x - a) + P(T - a < = D)
= (x - a)/T + a/T
= x/T
for x < a, it equals
0 + P(T - a< = D <= T + x - a)
= (T + x - a - T + a)/T
= x/T
Therefore, (D + a)mod T follows U[0, T). | g*********u 发帖数: 21 | 3 谢谢大侠!
很喜欢你那个without loss of generality,一下把问题简单许多:)
【在 s******h 的大作中提到】 : Without loss of generality, we can assume that a is in [0, T), : then (D + a)mod T = (D + a)I{D + a < T} + (D + a - T) I{D + a >= T} : thus for any x in [0, T) : P((D + a)mod T < = x) : = P(D + a < T, D + a < = x) + P(0 < = D + a - T <= x) : Clearly, for x >= a, it equals : P(D < = x - a) + P(T - a < = D) : = (x - a)/T + a/T : = x/T : for x < a, it equals
|
|