由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Mathematics版 - 一道分析题求助
相关主题
一个有意思的实分析问题怎么证明这个函数方程只有f(x)=x一个解
请教一道数学分析题求助一道数学分析题
请教一个数学分析的题目?问个复分析题
The existence of solutions to a system of polynomial equalities and inequalities?Please Help! 简单的Matlab 数值分析题
a question about entropya continuously convergence question
问个简单的问题:单调并且bounded的函数是一定连续可导almost问题多多,研究生院+选课+外语+summer school?
implicit function theorem转让一些数学书,加了书名
50个包子请教 Chebyshev's integral inequalityRecommend a intro. level book of Differential Geometry
相关话题的讨论汇总
话题: x0话题: y2话题: y1话题: inequality话题: small
进入Mathematics版参与讨论
1 (共1页)
f********t
发帖数: 14
1
一个貌似简单的问题,觉得对但又不敢确定,请高手指教。
U(x,y) is a continuously differentiable function of (x,y).
For three fixed values y1, y2 and x0,
a*U(x0,y2)+(1-a)*U(x0,y1)>U(x0,a*y2+(1-a)*y1),
where 0= Add a small term k*a*(1-a) to x0, for k small enough, I claim the inequality
is still true, as follows,
a*U(x0+k*a*(1-a),y2)+(1-a)*U(x0+k*a*(1-a),y1)>U(x0,a*y2+(1-a)*y1).
Let f(a)=a*U(x0+k*a*(1-a),y2)+(1-a)*U(x0+k*a*(1-a),y1)-U(x0,a*y2+(1-a)*y1),
the diff
G******i
发帖数: 163
2
This does not necessarily hold, if we only assume the conditions you gave.
> Add a small term k*a*(1-a) to x0, for k small enough, I claim the
inequality
is still true, as follows,
a*U(x0+k*a*(1-a),y2)+(1-a)*U(x0+k*a*(1-a),y1)>U(x0,a*y2+(1-a)*y1).
f********t
发帖数: 14
3
Thanks, could you please say a little bit more?

【在 G******i 的大作中提到】
: This does not necessarily hold, if we only assume the conditions you gave.
: > Add a small term k*a*(1-a) to x0, for k small enough, I claim the
: inequality
: is still true, as follows,
: a*U(x0+k*a*(1-a),y2)+(1-a)*U(x0+k*a*(1-a),y1)>U(x0,a*y2+(1-a)*y1).

G******i
发帖数: 163
f********t
发帖数: 14
5
Thank you, that's really helpful.
But in your case, does it mean that
if lim(a->0){(a-f(a))/(a^2(1-a))}>0, there exists k small enough 0 ))/(a^2(1-a))), so that a>f(a) can imply f(a)< a -k*a^2*(1-a) for 0
【在 G******i 的大作中提到】
: Let x0=0, y1=0,y2=1.
: Consider U(x,y)=(1-x)f(y),
: where f(0)=0, f(1)=1.
: Your condition
: a*U(x0,y2)+(1-a)*U(x0,y1)>U(x0,a*y2+(1-a)*y1) for 0: <=> f(a): Your claim
: a*U(x0+k*a*(1-a),y2)+(1-a)*U(x0+k*a*(1-a),y1)
: >U(x0,a*y2+(1-a)*y1) for 0: <=> f(a)< a -k*a^2*(1-a) for 0
f********t
发帖数: 14
6
G******i
发帖数: 163
7
Yes. That's enough for us to see your original claim was wrong.
Consider this one:
U(x,y)=[1-g(x)]*[y-y(1-y)h(y)], with
g(x)=exp(-1/x) *sin(1/x),
h(y)=exp(-1/y^2).
In this example, whatever nonzero k you take,
the desired inequality does not hold for a near 0.

【在 f********t 的大作中提到】

f********t
发帖数: 14
8
Thank you so much!
I see your points.
If I modify the small term, and let it be any positive number, so the desired inequality
is
a*U(x0+emisilon,y2)+(1-a)*U(x0+emisilon,y1)>U(x0,a*y2+(1-a)y1). Do you think
if we assume U(x,y) is absolutely continuous, is the inequality true?

【在 G******i 的大作中提到】
: Yes. That's enough for us to see your original claim was wrong.
: Consider this one:
: U(x,y)=[1-g(x)]*[y-y(1-y)h(y)], with
: g(x)=exp(-1/x) *sin(1/x),
: h(y)=exp(-1/y^2).
: In this example, whatever nonzero k you take,
: the desired inequality does not hold for a near 0.

G******i
发帖数: 163
9
更加不对了

desired inequality
think

【在 f********t 的大作中提到】
: Thank you so much!
: I see your points.
: If I modify the small term, and let it be any positive number, so the desired inequality
: is
: a*U(x0+emisilon,y2)+(1-a)*U(x0+emisilon,y1)>U(x0,a*y2+(1-a)y1). Do you think
: if we assume U(x,y) is absolutely continuous, is the inequality true?

1 (共1页)
进入Mathematics版参与讨论
相关主题
Recommend a intro. level book of Differential Geometrya question about entropy
Atiyah证明S^6上不存在复结构问个简单的问题:单调并且bounded的函数是一定连续可导almost
关于英语对数学能力的负面影响implicit function theorem
老张要跟Tao见面了50个包子请教 Chebyshev's integral inequality
一个有意思的实分析问题怎么证明这个函数方程只有f(x)=x一个解
请教一道数学分析题求助一道数学分析题
请教一个数学分析的题目?问个复分析题
The existence of solutions to a system of polynomial equalities and inequalities?Please Help! 简单的Matlab 数值分析题
相关话题的讨论汇总
话题: x0话题: y2话题: y1话题: inequality话题: small