r*******n 发帖数: 3020 | 1 Let p and q be distinct primes. Suppose that H is a proper subset of the
integers and H is a
group under addition that contains exactly three elements of the {p ,p+q,pq,
power(p,q), power(q,p)}.
solution is {p ,pq,power(p,q)}.
Does anybody explain how it is?
Thank you! | v********e 发帖数: 1058 | 2 proper subset, p \in H -> not p+q and power(q,p)
pq,
【在 r*******n 的大作中提到】 : Let p and q be distinct primes. Suppose that H is a proper subset of the : integers and H is a : group under addition that contains exactly three elements of the {p ,p+q,pq, : power(p,q), power(q,p)}. : solution is {p ,pq,power(p,q)}. : Does anybody explain how it is? : Thank you!
| r*******n 发帖数: 3020 | 3 还是不懂。
【在 v********e 的大作中提到】 : proper subset, p \in H -> not p+q and power(q,p) : : pq,
| v********e 发帖数: 1058 | 4 (p, p+q) = 1, so = N. so if p \in H, p+q \in H, then H \supseteq N,
contradicting the fact that H is a proper subset of N. the argument applies
for power(q, p).
【在 r*******n 的大作中提到】 : 还是不懂。
|
|