I***e 发帖数: 1136 | 1 设X为一随机变量,
P(X=k)=2^(-k), k=1,2,...
1. 取两个信封, 一个之中放3^X元, 另一个中放3^(X+1)元.
2. 从两个信封中随机(等概率)取出一个.
现在, 如果你看到是3^N元在信封中, 你的推理是: X只能是(N-1)或N
P(X=N|信封中有3^N)=P(X=N, 信封中有3^N元)/[P(X=N-1,信封中有3^N元)
+P(X=N, 信封中有3^N元)]=2^(-N)/(2^(-N+1)+2^(-N))=1/3.
所以, E(另一个信封中的钱数|看到3^N)=1/3*3^(N+1)+2/3*3^(N-1)=3^N+2*3(N-2)
>看到的3^N.
所以, 你应该换取另外的一个信封.
可是, 这个结论对任何看到的数都成立, 包含如果你看到3元的情形. 于是你得出结论,
不论给你的信封中装着多少钱你都应该要另一个. 所以, 你甚至没有必要打开信封就
应该决定换到另一个.
从另外角度, 这两个信封应该是等价的, 哪里逻辑出现问题了? | x******g 发帖数: 318 | 2 这个问题dntx曾经在水母的iqdoor版出过,当时的讨论真是激烈^_^
其实我也在《蚁迹寻踪》上见过这个题目
原因在于这里面根本就没有什么矛盾,换句话说矛盾只是一种幻觉.
应邀撤出一个矛盾来那就是:设一个信封里期望为k元,我们大概可以得到k=7k/9
之类的怪式子,但这并不是矛盾,因为k是无穷大
【在 I***e 的大作中提到】 : 设X为一随机变量, : P(X=k)=2^(-k), k=1,2,... : 1. 取两个信封, 一个之中放3^X元, 另一个中放3^(X+1)元. : 2. 从两个信封中随机(等概率)取出一个. : 现在, 如果你看到是3^N元在信封中, 你的推理是: X只能是(N-1)或N : P(X=N|信封中有3^N)=P(X=N, 信封中有3^N元)/[P(X=N-1,信封中有3^N元) : +P(X=N, 信封中有3^N元)]=2^(-N)/(2^(-N+1)+2^(-N))=1/3. : 所以, E(另一个信封中的钱数|看到3^N)=1/3*3^(N+1)+2/3*3^(N-1)=3^N+2*3(N-2) : >看到的3^N. : 所以, 你应该换取另外的一个信封.
| r****y 发帖数: 1437 | 3 here when you put 3^(x) and 3^(x+1) into two envelopes,
x is a R.V., but x+1 is not R.V.. Because once your x is selected,
x+1 is fixed. So P(x+1 for this case) = P(x).
then P(x=n|3^N in envelope) = 1/2, and then equal probablity
【在 I***e 的大作中提到】 : 设X为一随机变量, : P(X=k)=2^(-k), k=1,2,... : 1. 取两个信封, 一个之中放3^X元, 另一个中放3^(X+1)元. : 2. 从两个信封中随机(等概率)取出一个. : 现在, 如果你看到是3^N元在信封中, 你的推理是: X只能是(N-1)或N : P(X=N|信封中有3^N)=P(X=N, 信封中有3^N元)/[P(X=N-1,信封中有3^N元) : +P(X=N, 信封中有3^N元)]=2^(-N)/(2^(-N+1)+2^(-N))=1/3. : 所以, E(另一个信封中的钱数|看到3^N)=1/3*3^(N+1)+2/3*3^(N-1)=3^N+2*3(N-2) : >看到的3^N. : 所以, 你应该换取另外的一个信封.
| x******g 发帖数: 318 | 4 对了,土豆兄
看到我在science的帖子了吗?你那个证明是错误的.
【在 I***e 的大作中提到】 : 设X为一随机变量, : P(X=k)=2^(-k), k=1,2,... : 1. 取两个信封, 一个之中放3^X元, 另一个中放3^(X+1)元. : 2. 从两个信封中随机(等概率)取出一个. : 现在, 如果你看到是3^N元在信封中, 你的推理是: X只能是(N-1)或N : P(X=N|信封中有3^N)=P(X=N, 信封中有3^N元)/[P(X=N-1,信封中有3^N元) : +P(X=N, 信封中有3^N元)]=2^(-N)/(2^(-N+1)+2^(-N))=1/3. : 所以, E(另一个信封中的钱数|看到3^N)=1/3*3^(N+1)+2/3*3^(N-1)=3^N+2*3(N-2) : >看到的3^N. : 所以, 你应该换取另外的一个信封.
| J**i 发帖数: 166 | 5 ......
【在 r****y 的大作中提到】 : here when you put 3^(x) and 3^(x+1) into two envelopes, : x is a R.V., but x+1 is not R.V.. Because once your x is selected, : x+1 is fixed. So P(x+1 for this case) = P(x). : then P(x=n|3^N in envelope) = 1/2, and then equal probablity
| I***e 发帖数: 1136 | 6 我知道它是错误的--发贴后不久就发现反例了. 你贴的方法很精妙...
两个信封问题还真是令人惊叹: 直觉是多么不严格.
【在 x******g 的大作中提到】 : 对了,土豆兄 : 看到我在science的帖子了吗?你那个证明是错误的.
| I***e 发帖数: 1136 | 7 你的推理并不正确.
X is a R.V., X+1 is also an R.V. Conditional on you observed 3^N dollars you d
o not
know for sure what X is right? And there is a perfect probability distribution
.
To further illustrate, let's say you do the following many many times:
1. Pick a X
2. 2 envelopes one with 3^X, one with 3^(X+1)
3. Pick one at random, give it to you and you open it.
Now let's say that you have observed $27 in it: there must be a posterior dist
ribution
of X right? I am telling you that P(X=3|observed 27)
【在 r****y 的大作中提到】 : here when you put 3^(x) and 3^(x+1) into two envelopes, : x is a R.V., but x+1 is not R.V.. Because once your x is selected, : x+1 is fixed. So P(x+1 for this case) = P(x). : then P(x=n|3^N in envelope) = 1/2, and then equal probablity
| r****y 发帖数: 1437 | 8 Yeah, you are right. No matter what number you got, you always has more ch
ance to hold it as X rather than (X+1), so you should exchange for another one
, which is more likely a X+1.
contribute a small matlab script to simulate this problem
LEN = 1e7;
x = rand(LEN, 1);
y = 1 - x;
x = round(log2(y));
x = x + 1;
base = input('the base ');
total_money_exchange = 0;;
total_money = 0;
for i = 1:LEN
m = base^(-x(i));
n = base^(-x(i)-1);
% >0.5 for m and <0.5 for n
tmp = rand;
i
【在 I***e 的大作中提到】 : 你的推理并不正确. : X is a R.V., X+1 is also an R.V. Conditional on you observed 3^N dollars you d : o not : know for sure what X is right? And there is a perfect probability distribution : . : To further illustrate, let's say you do the following many many times: : 1. Pick a X : 2. 2 envelopes one with 3^X, one with 3^(X+1) : 3. Pick one at random, give it to you and you open it. : Now let's say that you have observed $27 in it: there must be a posterior dist
| J**i 发帖数: 166 | 9 嘿嘿,你这个程序其实根本得不到正确的结论的,多运行几次就知道了
信封里的钱的期望值是无穷大,所以是没办法蒙特卡罗的
【在 r****y 的大作中提到】 : Yeah, you are right. No matter what number you got, you always has more ch : ance to hold it as X rather than (X+1), so you should exchange for another one : , which is more likely a X+1. : contribute a small matlab script to simulate this problem : LEN = 1e7; : x = rand(LEN, 1); : y = 1 - x; : x = round(log2(y)); : x = x + 1; : base = input('the base ');
| q*s 发帖数: 26 | 10 Is the sigmma-field of the probability properly defined?
R.V is defined on sigma-field
【在 I***e 的大作中提到】 : 你的推理并不正确. : X is a R.V., X+1 is also an R.V. Conditional on you observed 3^N dollars you d : o not : know for sure what X is right? And there is a perfect probability distribution : . : To further illustrate, let's say you do the following many many times: : 1. Pick a X : 2. 2 envelopes one with 3^X, one with 3^(X+1) : 3. Pick one at random, give it to you and you open it. : Now let's say that you have observed $27 in it: there must be a posterior dist
| r***w 发帖数: 35 | 11 For rigorous proof, I do not support the computer programming as IMS has done
before regarding the Four Color Problem. I think the most important problem is
what the dual above declared, when X goes to infinity, it will blow up; so if
you wanna discuss this, the X must be finite number
【在 I***e 的大作中提到】 : 你的推理并不正确. : X is a R.V., X+1 is also an R.V. Conditional on you observed 3^N dollars you d : o not : know for sure what X is right? And there is a perfect probability distribution : . : To further illustrate, let's say you do the following many many times: : 1. Pick a X : 2. 2 envelopes one with 3^X, one with 3^(X+1) : 3. Pick one at random, give it to you and you open it. : Now let's say that you have observed $27 in it: there must be a posterior dist
| I***e 发帖数: 1136 | 12 The sigma-algebra is well defined.
The traditional 2-envelope problem has an undefined probability space.
But this enhanced version has a well defined probability space yet still
gives seemingly paradoxical conclusion.
【在 q*s 的大作中提到】 : Is the sigmma-field of the probability properly defined? : R.V is defined on sigma-field
| p***o 发帖数: 836 | 13 Somebody has a correct solution or explanation ?
【在 I***e 的大作中提到】 : The sigma-algebra is well defined. : The traditional 2-envelope problem has an undefined probability space. : But this enhanced version has a well defined probability space yet still : gives seemingly paradoxical conclusion.
| k***e 发帖数: 8 | 14 Search exchange paradox. I think the explanation is similar to
the simple version.
http://www.pitt.edu/~jdnorton/papers/Exchange_paradox.pdf
【在 p***o 的大作中提到】 : Somebody has a correct solution or explanation ?
|
|