f******g 发帖数: 423 | 1 据说是Bernoulli distribution,但我还是不知道如何套公式
已知有一组数共39个,value 为0 或1。
randomly select 20个,都是0。
问,1。所有数都是0的几率?
2。 如果要达到95% confidence level,我要抽查几个数? |
g********5 发帖数: 62 | 2 You should ask this question in Statistics board.
I do not understand your second question. Solution to 1th question is:
Prob(all 39# are zero)
= (39 choose 20) / { (20 choose 20) + (21 choose 20) + ...+ (39 choose 20) }
= (39 choose 20) / (40 choose 21)
= 21/40
where (n choose k)= n!/{ k!(n-k)! } |
f******g 发帖数: 423 | 3 谢谢,我其实也不知道,是乱问的。没想到能算出具体的概率而不是一个范围,所以才
问了第2个问题。
我这就转过去。
}
【在 g********5 的大作中提到】 : You should ask this question in Statistics board. : I do not understand your second question. Solution to 1th question is: : Prob(all 39# are zero) : = (39 choose 20) / { (20 choose 20) + (21 choose 20) + ...+ (39 choose 20) } : = (39 choose 20) / (40 choose 21) : = 21/40 : where (n choose k)= n!/{ k!(n-k)! }
|
w******i 发帖数: 503 | 4 your solution assumes the probabilities of 20 zero's, 21 zero's ... 39 zero'
s are same. should they be different if every number is equally likely to be
0 and 1? then prob(39 0's)/prob(20 0's) = (39 choose 39)/(39 choose 20)?
}
【在 g********5 的大作中提到】 : You should ask this question in Statistics board. : I do not understand your second question. Solution to 1th question is: : Prob(all 39# are zero) : = (39 choose 20) / { (20 choose 20) + (21 choose 20) + ...+ (39 choose 20) } : = (39 choose 20) / (40 choose 21) : = 21/40 : where (n choose k)= n!/{ k!(n-k)! }
|