b*****b 发帖数: 181 | 1 【 以下文字转载自 Quant 讨论区 】
发信人: belllab (tommorow), 信区: Quant
标 题: 100*100*100的cube里最多放多少个直径=10的球?
发信站: BBS 未名空间站 (Wed Mar 10 22:31:00 2010, 美东)
我算了下,最多1105 个。
第一层放105个。差着放。
第二层 100个。
第1, 3, 5,7,9,11层都是105个,
2,4,6,8,10都是100个。
最后是1105个。 | B*****t 发帖数: 335 | 2 My answer is (105+81)*6=1116, not sure if this is the maximum, but I am
sure 1105 is not the right answer.
【在 b*****b 的大作中提到】 : 【 以下文字转载自 Quant 讨论区 】 : 发信人: belllab (tommorow), 信区: Quant : 标 题: 100*100*100的cube里最多放多少个直径=10的球? : 发信站: BBS 未名空间站 (Wed Mar 10 22:31:00 2010, 美东) : 我算了下,最多1105 个。 : 第一层放105个。差着放。 : 第二层 100个。 : 第1, 3, 5,7,9,11层都是105个, : 2,4,6,8,10都是100个。 : 最后是1105个。
| m****e 发帖数: 139 | 3 there is a thing called Kepler conjecture that states the max packing
density is about 0.74 (sqrt(2)/6*pi). Most people consider the conjecture
proved but the actual proof has never been 100% "proved".
material sciences also deals with this problem when discussing lattice
structures. fcc and hcp are the structure with highest density, which is 0.
74.
so, the answer is probably 100^3 * 0.74 / (4 pi / 3 * 5^3), which is 1414. |
|