由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Database版 - nested SQL help!
相关主题
再一个Access问题Sybase最新企业级数据库ASE 12(之-)
请教一个SQL的问题~{8_JVGsVz~}: how to create trigger on a nested table?
新手如何快速学习数据库Help: 如何用 sum 和 count? (sql)
oracle rowid 问题如何向ORDB迁移关系数据库的数据。(Oracle)
Oracle char AND varchar2 datatype question.question on nested query
求助:将multiple checkbox改为一个column多个redord写入数据库Mysql如何限制返回数量并排序?
performance problem in Oracle Package请教一个query
Re: [转载] JDBC用完了oracle的large pool (memor有什么优化query的常用方法
相关话题的讨论汇总
话题: item1话题: sql话题: select话题: nested话题: like
进入Database版参与讨论
1 (共1页)
h****r
发帖数: 2056
1
can I use only one SQl sentence to select an item from
multiple table?
like,
select item1 from /* here should be another SQL sentence to
get
all tablename I want to search item1 */
where item1 like 'something';
or at lease can be:
select item1 from Tab1, Tab2 where item1 like 'something".
Thanks a lot for help.
p*****e
发帖数: 58
2
sure.
example:
select v1.a, v1.b, v2.e, v2.f from
(select t1.a, t2.b from t1 inner join t2 on t1.c=t2.c) v1
inner join
(select t3.e, t4.f from t3 inner join t4 on t3.c=t4.c) v2
where v1.a = 'abcd' and v2.f='xyz'

【在 h****r 的大作中提到】
: can I use only one SQl sentence to select an item from
: multiple table?
: like,
: select item1 from /* here should be another SQL sentence to
: get
: all tablename I want to search item1 */
: where item1 like 'something';
: or at lease can be:
: select item1 from Tab1, Tab2 where item1 like 'something".
: Thanks a lot for help.

1 (共1页)
进入Database版参与讨论
相关主题
有什么优化query的常用方法Oracle char AND varchar2 datatype question.
Can "NOT IN" be expressed in a single block query?求助:将multiple checkbox改为一个column多个redord写入数据库
ER model and 3NFperformance problem in Oracle Package
分组数据后求avg值不用不用partition怎么写Re: [转载] JDBC用完了oracle的large pool (memor
再一个Access问题Sybase最新企业级数据库ASE 12(之-)
请教一个SQL的问题~{8_JVGsVz~}: how to create trigger on a nested table?
新手如何快速学习数据库Help: 如何用 sum 和 count? (sql)
oracle rowid 问题如何向ORDB迁移关系数据库的数据。(Oracle)
相关话题的讨论汇总
话题: item1话题: sql话题: select话题: nested话题: like