m****n 发帖数: 51 | 1 请推荐一个常用的格式。
如果你有8阶精度的,更好。 | b*****y 发帖数: 163 | 2 I don't know if it worthes to do higher order
RK at all.
【在 m****n 的大作中提到】 : 请推荐一个常用的格式。 : 如果你有8阶精度的,更好。
| m****n 发帖数: 51 | 3 Surely, it is needed in some scientific calculations. I can give you examples.
J. Chem. Phys. 116, 538 (2002)
Sympletic Integration of Classical Trajectories: A case study
Ch. Schlier and A. Seiter.
【在 b*****y 的大作中提到】 : I don't know if it worthes to do higher order : RK at all.
| h***o 发帖数: 539 | 4 我觉得可以自己推呀, hoho...
【在 m****n 的大作中提到】 : 请推荐一个常用的格式。 : 如果你有8阶精度的,更好。
| w**d 发帖数: 2334 | 5 sometimes not so easy to get a good high order scheme.
As I remember, the exist highest A-stable(?) RK scheme is
6th order.
If you have some special requirement, e.g. the speed,
the robustness, it is even harder to get
a good one. I once used the 4th order A-stable RK scheme
with only 3 stages. It worked very well sometimes. But for some
problems, the round-off error just killed the solution.
some useful references:
general RK:
Solving ordinary differential equations :
Hairer, E. (Er
【在 h***o 的大作中提到】 : 我觉得可以自己推呀, hoho...
| r*r 发帖数: 8 | 6
^^^^^^^^^
it is SSP instead of A-stable.
As for A-stable, RADAU, developed
by Hairer (2002), uses A-stable
implicit RK method of variable
orders (between 5, 9 and 13).
Numerical experiments show that,
for stiff problems
【在 w**d 的大作中提到】 : sometimes not so easy to get a good high order scheme. : As I remember, the exist highest A-stable(?) RK scheme is : 6th order. : If you have some special requirement, e.g. the speed, : the robustness, it is even harder to get : a good one. I once used the 4th order A-stable RK scheme : with only 3 stages. It worked very well sometimes. But for some : problems, the round-off error just killed the solution. : some useful references: : general RK:
| w**d 发帖数: 2334 | 7 i c. The paper I read was published before 2002.
【在 r*r 的大作中提到】 : : ^^^^^^^^^ : it is SSP instead of A-stable. : As for A-stable, RADAU, developed : by Hairer (2002), uses A-stable : implicit RK method of variable : orders (between 5, 9 and 13). : Numerical experiments show that, : for stiff problems
| t*****o 发帖数: 74 | 8 又多学一点
偶最多只用4阶R-K, 一直认为R-K公式是固定的,
u* = u^0 + dt*...
u** = u* + dt*...
想要多精度就是多写几次, u******, 系数不同而已
HOHO
【在 r*r 的大作中提到】 : : ^^^^^^^^^ : it is SSP instead of A-stable. : As for A-stable, RADAU, developed : by Hairer (2002), uses A-stable : implicit RK method of variable : orders (between 5, 9 and 13). : Numerical experiments show that, : for stiff problems
| d***q 发帖数: 1119 | 9 taylor的
一种降阶形式
化为代数计算。。
不过用8阶也。。。【 在 twoxiao (老大,一点通) 的大作中提到: 】 |
|