由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Computation版 - 请教一个Gaussian quadrature的问题
相关主题
请教个低级计算问题 (转载)有限元是个烂数值方法;
问个matlab二重数值积分的问题matlab 的问题
trapzoid quadrature for tetrahedra?[转载] [Help]Gaussian
有人紧急问一个问题prove: deg(gcd(p,q))=nullity(sylvester(p,q))
一个奇怪的MATLAB数值积分问题[转载] 会数值积分的请帮忙看一下
求计算associated legendre polynomial的子程序Re: 请问normal disctribution的cdf函数在FORTRAN
legendre-fenchel变换的数学意义是什么?请教一个数值计算问题
这样数值积分怎么搞定?[转载] 有搞 神经网络算法的弟兄吗
相关话题的讨论汇总
话题: quadrature话题: weights话题: gaussian话题: 积分话题: 低阶
进入Computation版参与讨论
1 (共1页)
r****t
发帖数: 3
1
如果需要一种Gaussian quadrature scheme:低阶时的积分点包含于高阶的积分点中,
同时积分点的个数虽阶数的升高而增加得不快,比如以2^n的速度增加是可以接受的,
请问有没有这样的scheme? Thank you!
w**d
发帖数: 2334
2
What do you mean by 2^n? Is 'n' the order of quadrature ?
Could you be more specific?
For 1D, n classical (legendre) gauss points (& weights) will give
a quadrature with 2n order accuracy. If you don't care about the sign of
the weights, you can always find n-th order quadrature with any n distinct
points. To get the weights, you only need to solve a linear algebra equation.
So it is easy to make that 低阶时的积分点包含于高阶的积分点中.
But if you want all weights are non-negative, you might need to choose the

【在 r****t 的大作中提到】
: 如果需要一种Gaussian quadrature scheme:低阶时的积分点包含于高阶的积分点中,
: 同时积分点的个数虽阶数的升高而增加得不快,比如以2^n的速度增加是可以接受的,
: 请问有没有这样的scheme? Thank you!

r****t
发帖数: 3
3
是的,n是the order of quadrature. 2^n是quadrature point的个数,当然不一定
非要是2^n,只要个数随n增长的不快就行。
我最关心的是低阶的积分点包含于高阶的积分点中。legendre积分点是自己随便取的吗?
如果我希望有比较多的积分点位于积分区间的两个端点处,能不能实现呢?
能不能推荐一本讲地比较好的书?谢谢

equation.



【在 w**d 的大作中提到】
: What do you mean by 2^n? Is 'n' the order of quadrature ?
: Could you be more specific?
: For 1D, n classical (legendre) gauss points (& weights) will give
: a quadrature with 2n order accuracy. If you don't care about the sign of
: the weights, you can always find n-th order quadrature with any n distinct
: points. To get the weights, you only need to solve a linear algebra equation.
: So it is easy to make that 低阶时的积分点包含于高阶的积分点中.
: But if you want all weights are non-negative, you might need to choose the

w**d
发帖数: 2334
4

If you don't care the sign of the weights. It should be easy. Just follow
the definition of the quadrature.
E.g., given n points, x1, ..., xn, assume the weights are w1, ..., wn,
If you want M-th order quadrature, i.e. for any fi = x^i, i=0, ..., M,
the following fact holds:(def of quadrature)
integral( fi ) = fi(x1)*w1 + .... + fi(xn) *wn
when x1, ..., xn are distinct and M = n-1. The weights always exist.
So if you don't care the sign of the weights, it is always possible
to choose 低阶的积分

【在 r****t 的大作中提到】
: 是的,n是the order of quadrature. 2^n是quadrature point的个数,当然不一定
: 非要是2^n,只要个数随n增长的不快就行。
: 我最关心的是低阶的积分点包含于高阶的积分点中。legendre积分点是自己随便取的吗?
: 如果我希望有比较多的积分点位于积分区间的两个端点处,能不能实现呢?
: 能不能推荐一本讲地比较好的书?谢谢
:
: equation.
: ,
: ,

1 (共1页)
进入Computation版参与讨论
相关主题
[转载] 有搞 神经网络算法的弟兄吗一个奇怪的MATLAB数值积分问题
about Gaussian elimination zz求计算associated legendre polynomial的子程序
fortran的random number 相关的函数lib是啥?legendre-fenchel变换的数学意义是什么?
help on calculating transition dipole derivative with Gaussian 03这样数值积分怎么搞定?
请教个低级计算问题 (转载)有限元是个烂数值方法;
问个matlab二重数值积分的问题matlab 的问题
trapzoid quadrature for tetrahedra?[转载] [Help]Gaussian
有人紧急问一个问题prove: deg(gcd(p,q))=nullity(sylvester(p,q))
相关话题的讨论汇总
话题: quadrature话题: weights话题: gaussian话题: 积分话题: 低阶