r****t 发帖数: 3 | 1 如果需要一种Gaussian quadrature scheme:低阶时的积分点包含于高阶的积分点中,
同时积分点的个数虽阶数的升高而增加得不快,比如以2^n的速度增加是可以接受的,
请问有没有这样的scheme? Thank you! | w**d 发帖数: 2334 | 2 What do you mean by 2^n? Is 'n' the order of quadrature ?
Could you be more specific?
For 1D, n classical (legendre) gauss points (& weights) will give
a quadrature with 2n order accuracy. If you don't care about the sign of
the weights, you can always find n-th order quadrature with any n distinct
points. To get the weights, you only need to solve a linear algebra equation.
So it is easy to make that 低阶时的积分点包含于高阶的积分点中.
But if you want all weights are non-negative, you might need to choose the
【在 r****t 的大作中提到】 : 如果需要一种Gaussian quadrature scheme:低阶时的积分点包含于高阶的积分点中, : 同时积分点的个数虽阶数的升高而增加得不快,比如以2^n的速度增加是可以接受的, : 请问有没有这样的scheme? Thank you!
| r****t 发帖数: 3 | 3 是的,n是the order of quadrature. 2^n是quadrature point的个数,当然不一定
非要是2^n,只要个数随n增长的不快就行。
我最关心的是低阶的积分点包含于高阶的积分点中。legendre积分点是自己随便取的吗?
如果我希望有比较多的积分点位于积分区间的两个端点处,能不能实现呢?
能不能推荐一本讲地比较好的书?谢谢
equation.
,
,
【在 w**d 的大作中提到】 : What do you mean by 2^n? Is 'n' the order of quadrature ? : Could you be more specific? : For 1D, n classical (legendre) gauss points (& weights) will give : a quadrature with 2n order accuracy. If you don't care about the sign of : the weights, you can always find n-th order quadrature with any n distinct : points. To get the weights, you only need to solve a linear algebra equation. : So it is easy to make that 低阶时的积分点包含于高阶的积分点中. : But if you want all weights are non-negative, you might need to choose the
| w**d 发帖数: 2334 | 4
If you don't care the sign of the weights. It should be easy. Just follow
the definition of the quadrature.
E.g., given n points, x1, ..., xn, assume the weights are w1, ..., wn,
If you want M-th order quadrature, i.e. for any fi = x^i, i=0, ..., M,
the following fact holds:(def of quadrature)
integral( fi ) = fi(x1)*w1 + .... + fi(xn) *wn
when x1, ..., xn are distinct and M = n-1. The weights always exist.
So if you don't care the sign of the weights, it is always possible
to choose 低阶的积分
【在 r****t 的大作中提到】 : 是的,n是the order of quadrature. 2^n是quadrature point的个数,当然不一定 : 非要是2^n,只要个数随n增长的不快就行。 : 我最关心的是低阶的积分点包含于高阶的积分点中。legendre积分点是自己随便取的吗? : 如果我希望有比较多的积分点位于积分区间的两个端点处,能不能实现呢? : 能不能推荐一本讲地比较好的书?谢谢 : : equation. : , : ,
|
|