h*******o 发帖数: 4884 | 1 我用三个group
每天都测一个数据点, 一共2周
这样每组都有一个随时间(day)变化的曲线
用什么test能够判定这3个曲线significantly difference ?
谢谢 |
D*a 发帖数: 6830 | |
N******n 发帖数: 3003 | 3
ANOVA with repeated measure, so that the correlation between time series
data is considered.
here is some useful link:
http://www.ats.ucla.edu/stat/sas/library/repeated_ut.htm
【在 h*******o 的大作中提到】 : 我用三个group : 每天都测一个数据点, 一共2周 : 这样每组都有一个随时间(day)变化的曲线 : 用什么test能够判定这3个曲线significantly difference ? : 谢谢
|
M*******y 发帖数: 102 | 4 如果每天测的是只是为了重复,拿这个就是repeated measurement. 基本就是一个三组
单条件的ANOVA。
如果时间上有变化,那么可以是双条件的ANOVA,或者是time series |
X***n 发帖数: 366 | |
o*p 发帖数: 177 | 6 I would do:
repeated measures ANOVA
covariance matrix: AR1
test: group by time (linear or quadratic trend) interaction
【在 h*******o 的大作中提到】 : 我用三个group : 每天都测一个数据点, 一共2周 : 这样每组都有一个随时间(day)变化的曲线 : 用什么test能够判定这3个曲线significantly difference ? : 谢谢
|
o*p 发帖数: 177 | 7 survival analysis is for time to event data.
【在 X***n 的大作中提到】 : 为什么不是survival analysis?
|
y*****w 发帖数: 1350 | 8 What oop mentioned makes sense. It's a mixed model repeated measures
analysis.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SAS code:
proc mixed data=data;
class group subject;
model y = group day group*day group*day*day / ddfm=kr;
repeated day / type=ar(1) subject=subject;
run;
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Note:
(1) Although ar(1) is supposed to be the best covariance structure, it would
be better to test other covariance structures such as un (unstructured) and
toep (toeplitz), then compare their information criteria to judge which
covariance structure is the most appropriate one.
(2) If the quadratic interaction term is not significant, drop it from the
mixed model.
(3) You may want to consider some alternative models such as random
coefficient regression models. |
K****n 发帖数: 5970 | 9 repeated measure 最常见,我小时候还用过mixed model,看来现在也没流行起来
可是你看wiki:
Because of their advantage to deal with missing values, mixed effects models
are often preferred over more traditional approaches such as repeated
measures ANOVA.
http://en.wikipedia.org/wiki/Mixed_model |