J****g 发帖数: 103 | 1 这种情况怎么算呢:before A tosses 51st coin. B win & B had one more H than A
. Now A tosses and the 51st coin shows H, which means Eq. |
|
l*********o 发帖数: 3091 | 2 H:head
for A n+1 toss,
(n+1)H nH (n-1)H ... 0H
C(n+1,0) C(n+1,1) C(n+1,2) ... C(n+1,n+1)
for B n toss,
nH (n-1)H (n-2)H ... 0H
C(n,0) C(n,1) C(n,2) ... C(n,n)
total_A_win_case=
C(n+1,0)*(C(n,0)+C(n,1)+C(n,2)+...+C(n,n))
+C(n+1,1)*(C(n,1)+C(n,2)+...+C(n,n))
+...
+C(n+1,n)*C(n,n)
A_win_probability = total_A_win_case/2^n/2^(n+1) |
|
p*****k 发帖数: 318 | 3 not to beat it to death, but for daj's approach, note after 50 tosses
of each player, if A is behind with # of H's, he can never win with
the extra toss (the best case is a tie); on the other hand, if A is
already ahead, he will surely win. so half-half split here due to
the symmetry.
the only case left to examine is tie so far, for which case, A wins
again with half chance (another half results tie).
btw, there is a closed-form solution for the chance of tie:
C(2n+1,n)/2^(2n+1)
the easiest way |
|
w******e 发帖数: 81 | 4 是问2 heads in a row就stop的期望么? 应该可以用markov chain列方程求解,或者
条件概率E=E(hh|the first toss is h)+E(hh|the first toss is t)。二叉树可以
recursive调用。 |
|
o****e 发帖数: 80 | 5 1) a rabbit can either jump up 2 steps or it will jump down 1 step, each with
50% chance. What is the probability
that it will eventually get to -1?
2) A game, you have $2, I have $1, toss a unfair coin, you win probability is 0.4 and I win probability 0.6,
once bet $1, what is the probability I win in the final. How many expect toss before the game is over. |
|
a***r 发帖数: 146 | 6 A fair coin toss. You win $1 if it is head, otherwise lose $1. What is the
prob that you
lose $5 before you win $10? What is the expected number of tosses before
you either
win $5 or lose $10. |
|
h*******n 发帖数: 614 | 7 both toss 4 times B toss 1 more time Rsult
A
A=B B doesn't change B win
A=B B++ A win
A>B whatever A win
Therefore the chance is 1/2 |
|
h*******n 发帖数: 614 | 8 both toss 4 times B toss 1 more time Rsult
A
A=B B doesn't change B win
A=B B++ A win
A>B whatever A win
Therefore the chance is 1/2 |
|
h*******n 发帖数: 614 | 9 both toss 4 times B toss 1 more time Rsult
A
A=B B doesn't change B win
A=B B++ A win
A>B whatever A win
Therefore the chance is 1/2 |
|
s**e 发帖数: 1834 | 10 Here is an example that why you should not always stop at H > T.
Suppose (H,T)=(51,50). If stop now, the ratio is 51/101.
But if you keep tossing another 2 times, you will get:
(1) (H,T)= (53,50), ratio = 53/103 (with probability 1/4)
(2) (H,T)= (52,51), ratio = 52/103 (with probability 1/2)
(3) (H,T)= (51,52), ratio = 51/103 (with probability 1/4)
However, in the case (3) above, you can keep tossing,
and can achieve at least 1/2.
Here we have
53/103*1/4 + 52/103*1/2 + 1/2 * 1/4 > 51/101.
So we ... 阅读全帖 |
|
l*****y 发帖数: 317 | 11 I think this makes sense. The expectations after the 3rd-7th tossing are 10.
5, 14, 17.5, 21 and 24.5, and they all satisfy gaussian distribution. Just
add all the distribution (only for >=15) together and we will have a
symmetric gaussian. But note that it will have a longer tail on the right
side, since it is still possible to get a number less than 15 after 8 tosses
, so the probability to get 18 is a little larger than that of 17. |
|
t*******y 发帖数: 637 | 12 Toss a dice. What is the expected number of tosses before getting two
consecutive 6's?
这题答案是不是 42
Algorithm to reverse the word order in a sentence with words seperated by
white space.
这题要现场写程序吗? |
|
w**********y 发帖数: 1691 | 13 多谢分享.大概做了做..欢迎补充和指正.
- sqrt(i)=?
e^{\pi/4 i} or - e^{\pi/4 i}
- You and me roll a dice,first one gets a six wins. You roll first. what
is the probability of you winning?
P(I win) = P(Y !win and I win) = 6/11
- A stair of n steps. Each time you step up 1 or 2 steps. How many
different ways are there to reach the top? what is the asymptotic limit?
Fibonacci sequence ..limF(n)/F(n-1)==x for n>2, solve x, and F(n) ~ x^{n-1}
- Moment generating function of standard model.
statistic book…
- Write a si... 阅读全帖 |
|
t*******y 发帖数: 637 | 14 第二题应该是6/11吧
能讲讲这个吗? - X1 and X2 are independent random variable with pdf f and g.
what is what is the pdf of X=X1+X2
Jacobian matrix for X1+X2 and X1-X2..
多谢分享.大概做了做..欢迎补充和指正.
- sqrt(i)=?
e^{\pi/4 i} or - e^{\pi/4 i}
- You and me roll a dice,first one gets a six wins. You roll first. what
is the probability of you winning?
P(I win) = P(Y !win and I win) = 5/6*1/6
- A stair of n steps. Each time you step up 1 or 2 steps. How many
different ways are there to reach the top? what is the asymptotic... 阅读全帖 |
|
Y******u 发帖数: 1912 | 15 If one tosses a fair coin 5 times, what is the probability of not
getting 2 heads or 2 tails in a row?
Anyone get the answer? I know how to do it with unlimited times using Makov
chain. But how to solve with limit tosses? |
|
b*****w 发帖数: 79 | 16 Somehow I got interviews from Jane Street and DE Shaw research and people
told me they are very famous. I am never prepared for finance so I guess I
am not going to pass the second rounds.
Here are some questions that I still don't know how to solve.
1. You throw a coin until you see 20 consecutive heads in a row. What is the
probability that you see 10 consecutive tails in a row before you stop?
2. Two people, X and Y, throw coins. X stops until he sees 2 consecutive
heads in a row and Y stops ... 阅读全帖 |
|
z****s 发帖数: 532 | 17 an unfair coin, toss 3 times get HHH in a row, what's the probability to get
a H in forth toss?
怎么估计为head的概率呢? |
|
p*****k 发帖数: 318 | 18 latingirl, i guess it's 6 consecutive T's followed by 6 consecutive H's, i.e.,
the probability of the pattern "TTTTTTHHHHHH" ever occurring in 10^6 tosses?
if so, you could consider the dual probability, i.e., the pattern never
appears within total of n tosses: p(n), for which the recurrence is
p(n+12)=p(n+11)-p(n)/2^12
with p(0)=p(1)=...=p(11)=1.
standard technique applies. some details and extension could be found here:
http://www.wilmott.com/messageview.cfm?catid=26&threadid=74043
all you ne... 阅读全帖 |
|
n******t 发帖数: 189 | 19 we try to toss a fair die, let Sn is the sum of the first n tosses result,
what is the probability that Sn is divisible by 13 as n goes to infinity? |
|
x*********i 发帖数: 55 | 20 感觉有几个题目选项里没有给出正确答案,很费解; 贡献几道.
1. toss a fair coin until you get two heads in a row and find the
probability of tossing 5 times. (My answer is 3/32 which did not appear in
the available four numbers, getting a little frustrated).
2. probability of having 3 random points on a circle within a semicircle (My
answer is 3/8)
3. 4 random variables with same pairwise correlations, find the minimum
possible value of the correlation (My answer is 0)
4. calculate P(B_1>0, B_2>0) (my answer is 3/8)
5. find ... 阅读全帖 |
|
d****d 发帖数: 2919 | 21 第一题我觉得是1/4 ?
5 个toss 里面,一直到第五次才拿到两个连续H的,就三种:
HTTHH, THTHH, TTTHH,
一直toss 5下,不管结果怎么样的,有12种:
HTT, THT, TTT 和 HH, TT, HT, TH 任意组合,3*4 = 12 种.
两个除一下,是1/4 ?
My |
|
L**********u 发帖数: 194 | 22 My understanding is to find the expected number of tossing.
let us denote the number of tossing by N. For this random variable
the probability N=n, where n>=3 is
P(N=n)=60(2^{n-1}-2)/6^n.
by the definition of expectation,
E[N]=111/30, if there is no mistake on my calculation.
次? |
|
g*********r 发帖数: 2847 | 23
E(gain)= E'(gain) * (1-P(fail to toss 100 times))-50*P(fail to toss 100 times)
where E'(gain) is the answer to question 1 |
|
l*******1 发帖数: 113 | 24
there is 1/2^50 chance of having all tails in the first 50 tosses, also 50/2
^53 to have 1 head and 52 tails in 53 tosses... so x goes from 50 to 100.
any ideas? |
|
r**a 发帖数: 536 | 25 先说题目:假设我有50刀。然后toss a fair coin。如果Head那么我赢2刀,如果Tail
我输1刀。假设一共toss 100次而且在此期间如果我的账户balance是0的话,就必须退
出。问这样的游戏的最终我能期望赢多少。
这个问题我可以用brownian motion去approximate random walk,然后mimic barrier
option pricing去做。我这里的问题是有没有什么更加精细的办法,毕竟random walk
的极限才是brownion motion。 |
|
r**a 发帖数: 536 | 26 That question is fake by myself. You may change the initial to any number
and change the number of tosses to another positive integer. Basically, here
i am asking the idea how to solve this kind of problem by only using random
walk not approximating this random walk by a Brownian motion.
BTW, if you
forget about the barrier, then the expected balance after N toss will be 50
+N/2.
The problem here is if the random walk with drift still has the reflection
principle. I am not sure about this. |
|
a**********n 发帖数: 59 | 27 is it like the process of tossing the coins, head/tail probability 0.5/0.5,
the expectation of T that two heads are tossed consecutively? then the
answer is 6 |
|
d******e 发帖数: 551 | 28 This is reasonable solution
By testing the Probability (One get 20 or more consecutive head per
2^21-2=2097150 toss), we get 0.6321. So at least it's not a rediculous
solution. Where can I find more details?
Solution by Matlab of Probability (One get 20 or more consecutive head per
2^21-2=2097150 toss) (Apply MArkov Chain):
k=20;
M = zeros(k+1,k+1);
for (i=1:k)
M(i,1)=0.5;
M(i,i+1)=0.5;
end;
M(i+1,i+1)=1;
S=M^2097150;
S(1,k+1)
1/2
day
wound |
|
M*****g 发帖数: 3145 | 29 【 以下文字转载自 Fashion 讨论区 】
发信人: Yobi (11), 信区: Fashion
标 题: 我的婚礼准备过程(很长,不想办或想简单办的姐妹慎入
发信站: BBS 未名空间站 (Tue Mar 8 20:40:23 2011, 美东)
在office没活干,超级无聊.看到大家开始讨论婚纱的事,想想来写个我的婚礼准备过程吧,给需要的JM们做个参考.
故事就从订完婚开始吧.
第一件大事情,就是找婚礼地点.我们是在yelp上找的,然后挑选了几个候选的地方一个个去看的.看每个地点周围的环境,毕竟婚礼当天摄影很多,所以周围的环境很重要,大家都希望拍出PP的照片的,婚礼地点的景观作为背景是很重要的.然后问每家的报价.美国这边摆酒席一般都是按人头算的,我们看的主要是country club和hotel,至少这两类地方是这么算的.然后还要问啥时候有空能给我们.美国办婚礼一般都是在周六的,所以时间有点点挑.这件事情一定要第一个做,把时间地点定了你才能着手做其他的工作.
第二件大事就是选自己的婚纱,婚纱的lead time比较久,所以要给足时间.同时,选定伴娘和伴娘的服装.西式婚礼... 阅读全帖 |
|
Y**i 发帖数: 6922 | 30 【 以下文字转载自 Fashion 讨论区 】
发信人: Yobi (11), 信区: Fashion
标 题: 我的婚礼准备过程(很长,不想办或想简单办的姐妹慎入
发信站: BBS 未名空间站 (Tue Mar 8 20:40:23 2011, 美东)
在office没活干,超级无聊.看到大家开始讨论婚纱的事,想想来写个我的婚礼准备过程吧,给需要的JM们做个参考.
故事就从订完婚开始吧.
第一件大事情,就是找婚礼地点.我们是在yelp上找的,然后挑选了几个候选的地方一个个去看的.看每个地点周围的环境,毕竟婚礼当天摄影很多,所以周围的环境很重要,大家都希望拍出PP的照片的,婚礼地点的景观作为背景是很重要的.然后问每家的报价.美国这边摆酒席一般都是按人头算的,我们看的主要是country club和hotel,至少这两类地方是这么算的.然后还要问啥时候有空能给我们.美国办婚礼一般都是在周六的,所以时间有点点挑.这件事情一定要第一个做,把时间地点定了你才能着手做其他的工作.
第二件大事就是选自己的婚纱,婚纱的lead time比较久,所以要给足时间.同时,选定伴娘和伴娘的服装.西式婚礼... 阅读全帖 |
|
w******i 发帖数: 429 | 31 刚才我的摄影师说婚礼的照片就要处理好了,好开心~
再发一张engagement pic 怀着紧张的心情盼望着更多的婚礼的pp
想念那些感人的moments,伴郎伴娘的toast
想着那些大笑的时候,flower toss和garter toss
想着那些尴尬的时刻,和我们不会跳舞的妈妈随便的扭扭
还有那些可爱的小loli们~
整个婚礼终于完成了
最近在写thank you card 怀着感恩的心情谢谢我们所有wendding party的朋友们,也
谢谢我的家人们~ |
|
S*********g 发帖数: 24893 | 32 但合起来就致命了。
比如说,你有两个硬币,跟人打赌10块钱,你赌两个heads,toss起来,果然2个heads。
你赢了。
这时候输家跳出来质疑,硬币做过手脚,旁观者都会一笑了之,觉得是输家无赖。
然后,你连续toss了20次,20次都是2个heads。
现在傻子也看出来你是玩假的了吧。
方为了质疑韩寒撒谎,手里有不下20个疑点了吧?
如果这些疑点的发生概率相对independent,韩粉们,你们自己估摸一下,韩寒和方的辩论,谁更站得住脚。
可惜,对很多读者来说,外形和人格是可以划等号的。
酷=高尚
帅=正直
富=诚实 |
|
w*******y 发帖数: 60932 | 33 *- (Limit 256 per person per day) with Code # 9159
Add Free Cinnastix with Code EBCS
Premium toppings $1 extra
Example:
I got all this for $14.05
Large(14") Hand Tossed Pizza
Whole: Robust Inspired Tomato Sauce, Cheese, Pepperoni, Mushrooms
Cooking Instructions:
Change Pizza Remove $5.99
Large(14") Hand Tossed Pizza
Whole: Robust Inspired Tomato Sauce, Cheese, Philly Steak, Premium Chicken
Cooking Instructions:
Change Pizza Remove $6.99
8-Piece Cinna Sti
Icing
Cooking In... 阅读全帖 |
|
w*******y 发帖数: 60932 | 34 La-Z-Boy Riley 4-Piece Seating Set
Model# DRIL-4PC
Link:
http://www.mygofer.com/shc/s/p_10175_27151_028W026730920001P
Reg Price $699
Deal Price $399
Savings $300
Product Description
This set includes one glass top coffee table, two lounge chairs with toss
pillow and one loveseat with two toss pillows.
Heavy-guage, sturdy steel frame
Eco-friendly, anti-corrosion Interpon powder coating
Quick-drying cushions covered in 100% woven polyester for a luxurious linen
feel and long-lasting durability
Cof... 阅读全帖 |
|
w*******y 发帖数: 60932 | 35 Maggiano's has a Buy one get one dish for $12.95
Dine-in only
Spaghetti, Marinara $12.95
Spaghetti served with our classic blend of tomatoes, basil, oregano and
olive oil
Spaghetti, Meat Sauce $12.95
Spaghetti served with our Italian meat sauce
Spaghetti, Meatball $12.95
Spaghetti topped with a handmade meatball and served in our marinara or meat
sauce
Eggplant Parmesan $12.95
Sliced eggplant, breaded and fried, layered with Provolone cheese and
marinara sauce
Four Cheese Ravioli + ... 阅读全帖 |
|
|
g********d 发帖数: 4174 | 37 【 以下文字转载自 USANews 讨论区 】
发信人: willhung (黄威廉), 信区: USANews
标 题: 麻省的参议员补选,民主党可能失手!!!!
关键字: HWSA
发信站: BBS 未名空间站 (Fri Jan 15 01:44:21 2010, 美东)
希望几个月前看来不可能的事情19号真的发生,让侯赛因的医保见鬼去吧
Massachusetts Senate race now a toss-up, analysts say
Posted: January 14th, 2010 06:49 PM ET
From CNN Associate Producer Martina Stewart
Republican Scott Brown is now in a toss-up Senate race in Massachusetts,
according to two non-partisan political analysts.
Washington (CNN) – The Massachusetts Senate race between Democrat |
|
k*****e 发帖数: 22013 | 38 ☆─────────────────────────────────────☆
globalized (球球) 于 (Fri Jan 15 12:52:16 2010, 美东) 提到:
【 以下文字转载自 USANews 讨论区 】
发信人: willhung (黄威廉), 信区: USANews
标 题: 麻省的参议员补选,民主党可能失手!!!!
关键字: HWSA
发信站: BBS 未名空间站 (Fri Jan 15 01:44:21 2010, 美东)
希望几个月前看来不可能的事情19号真的发生,让侯赛因的医保见鬼去吧
Massachusetts Senate race now a toss-up, analysts say
Posted: January 14th, 2010 06:49 PM ET
From CNN Associate Producer Martina Stewart
Republican Scott Brown is now in a toss-up Senate race in Massachusetts,
according to two n |
|
F*******o 发帖数: 287 | 39 【 以下文字转载自 Military 讨论区 】
发信人: FlyingBro (北美飞哥), 信区: Military
标 题: Official: Riders say NYC bus crash driver swerved
发信站: BBS 未名空间站 (Sun Mar 13 21:40:07 2011, 美东)
NEW YORK – Passengers and witnesses to a horrific crash that sheared the
top off a bus and killed 14 people told investigators that the driver's
account of getting clipped by a tractor-trailer didn't match up to what they
felt and saw before the vehicle slid off the road and into a sign pole.
Driver Ophadell Williams had told police th... 阅读全帖 |
|
n**********r 发帖数: 2061 | 40 Sheng Guangzhu, Chinese Rail Chief, Should Resign
While Sheng Guangzhu, Chinese Rail Chief, is leading the rail ministry of
China, he is taking ultimate responsibility of the loss of life in Wenzhou
train crash accident. He could not and should not keep the superior power
and welfare after neglecting the possibility that there might be more than
one little girl still alive inside the trains which were tossed off the
bridge, demolished and buried by the rescue team. He owns the official
apology f... 阅读全帖 |
|
N***Y 发帖数: 19 | 41 【 以下文字转载自 Military 讨论区 】
发信人: NYBOY (阳光帅男), 信区: Military
标 题: New York Times: Thousands Chip In to Help Artist Pay Fine
发信站: BBS 未名空间站 (Sun Nov 6 13:48:00 2011, 美东)
BEIJING — In the days since the Chinese government delivered a punitive $2.
4 million tax bill to the artist Ai Weiwei, thousands of people have
responded by donating money in a gesture that is at once benevolent and
subversive.
More than 20,000 people have together contributed more than $550,000 since
last Tuesday, when tax offici... 阅读全帖 |
|
p*********w 发帖数: 23432 | 42 时代杂志年度人物 Runner-Up:艾胖胖(图)zz
具体的文章在这里
http://www.time.com/time/specials/packages/article/0,28804,2101
For 81 days last spring and summer, Ai Weiwei was China's most famous
missing person. Detained in Beijing while attempting to catch a flight to
Hong Kong on April 3, Ai, an artistic consultant for the iconic Bird's Nest
stadium, was held almost entirely incommunicado and interrogated some 50
times while friends and supporters around the world petitioned for his
release. On Nov. 1, Ai, who says th... 阅读全帖 |
|
c********t 发帖数: 320 | 43 1,563 comments
* Popular Now
* Newest
* Oldest
* Most Replied
*
jeffrey
135users liked this commentPlease sign in to rate!Please sign in to
rate!15users disliked this comment
jeffrey • Roanoke, Virginia • 1 day 12 hrs ago
After experiencing Newark he'll probably go home!
o
A Yahoo User
42users liked this commentPlease sign in to rate!Please sign in
to rate!34users disliked this comment
... 阅读全帖 |
|
m*******t 发帖数: 482 | 44 澄清《弯而不折》的事实
傅平
一篇关于我的书《弯曲,不会折断》,由“福布斯”发布,并且在ForbesChina.com(
这个链接是谷歌的英文翻译)上被翻译成中文。这个翻译在措辞上有几处不准确。之后
,这些错误在新的发布告示中已经得到纠正。与此同时,中国的博客方舟子发布了一个
故事,他质疑我的信誉。约翰•肯尼迪也在中国南方早报的博客中给予回应。虽
然方及肯尼迪的评论正确地引用了“福布斯”文章的原始版本,但这篇原始版本所提供
的信息却是不准确的。实际上他们应该以我的书(指《弯曲,不会折断》)为准。我很
愿意回应他们和其他批评者的意见,这些意见来自各个网站,都攻击我的故事的真实性。
问:为什么你说你在“文革”期间被劳教?
我并没有说或写,我是被劳教,我说,我住了10年的南京航空航天大学校园在大学宿舍
。中国儿童不会在劳教所。我也没有说我是一个工厂的工人。我说毛泽东要我们向工农
兵学习。
问:如果你在10年的“文化大革命”中,被剥夺了接受教育的权利,那么大学恢复招生
以后,你是如何被录取的?当时的录取率低于5%。你是个天才吗?
1972年以后,学校(应指中学)恢复(第128页)。... 阅读全帖 |
|
D*V 发帖数: 3096 | 45 (谨以此帖,送给那些说中国人不懂幽默,电视台脱口秀没有底线,笑话没有界限的人)
我看这个喜剧的时候,只知道笑,并不知道有人会为此去游行示威。
现在想想,很简单,因为我不是波多黎各人。
波多黎各是美国的自治州,而且 NBC 的喜剧里也没有说要杀光波多黎各人。
NBC Apologizes for 'Seinfeld' Episode on the Puerto Rican Day Parade
Published: May 09, 1998
SIGN IN TO E-MAIL
PRINT
Faced with criticism from the leader of a Puerto Rican organization who
found the ''Seinfeld'' episode on Thursday insulting, NBC apologized
yesterday, saying it had not intended to offend anyone.
The second-to-last ''Seinfeld'' featured Jerry, Elaine, G... 阅读全帖 |
|
U*E 发帖数: 3620 | 46 Colorado shooting suspect James Eagan Holmes was honor student
By Sara Burnett and Jessica Fender
Denver Post
Posted: 07/20/2012
AURORA, Colo. --The 24-year-old accused of shooting dozens of people early
Friday morning was a former honor student and recent graduate school dropout
who apparently booby-trapped his apartment and left the stereo blaring
nonstop techno music before he headed to the movie theater where police say
he killed 12 people.
James Eagan Holmes surrendered to police in the par... 阅读全帖 |
|
j****e 发帖数: 12067 | 47 好像美国人知道这首诗的不少
http://www.youtube.com/watch?v=VFy7XidbnKw
The Raven
Once upon a midnight dreary, while I pondered, weak and weary,
Over many a quaint and curious volume of forgotten lore,
While I nodded, nearly napping, suddenly there came a tapping,
As of some one gently rapping, rapping at my chamber door.
"'Tis some visitor," I muttered, "tapping at my chamber door —
Only this, and nothing more."
[show]
Ah, distinctly I remember it was in the bleak December,
And each separate dying... 阅读全帖 |
|
w****j 发帖数: 5581 | 48 我们只能承认,Numidia在62BC之后到50BC发生的事情对于现代人来说是处在一团迷雾
当中。Hiempsal II是何时去世,Juba I是怎样即位的我们一无所知。可以确认的是
50BC那年,在王位上的是Juba I。Juba I应该是在80BC前后出生的。上面提到过,他在
63BC那年去罗马参加Rullus的土地法案的听证会(让我们借用一下这个现代政治词汇)
,Cicero给我们留下一个对这个年轻王子的描述:在他们(元老们)面前的是王子Juba
,一个财富多得犹如他浓密毛发的年轻人。Cicero这里用他的修辞手法暗示Juba要用他
的财富来施加对Numidia有利的影响,同时,也巧妙的用“野蛮人”的多毛发和喜欢把
胡子刮干净的罗马人形象做对比以激起种族意识。他用的拉丁词iuba是个多义词,也可
以当鬃毛(mane)讲。钱币上的Juba I的形象有着一把大胡子。想象一下,几个月后
Caesar为了替Masintha辩护而跳到他面前,一把揪住他的胡子,这是怎样一副情景。当
罗马陷入内乱的时候而衰退的时候,没有什么比罗马人和“野蛮人”间的相貌差异,而
不是罗马人在战场上的胜利,更为大... 阅读全帖 |
|
R*****d 发帖数: 1148 | 49 ☆─────────────────────────────────────☆
whctmj (马甲) 于 (Mon Apr 4 03:19:40 2011, 美东) 提到:
我们只能承认,Numidia在62BC之后到50BC发生的事情对于现代人来说是处在一团迷雾
当中。Hiempsal II是何时去世,Juba I是怎样即位的我们一无所知。可以确认的是
50BC那年,在王位上的是Juba I。Juba I应该是在80BC前后出生的。上面提到过,他在
63BC那年去罗马参加Rullus的土地法案的听证会(让我们借用一下这个现代政治词汇)
,Cicero给我们留下一个对这个年轻王子的描述:在他们(元老们)面前的是王子Juba
,一个财富多得犹如他浓密毛发的年轻人。Cicero这里用他的修辞手法暗示Juba要用他
的财富来施加对Numidia有利的影响,同时,也巧妙的用“野蛮人”的多毛发和喜欢把
胡子刮干净的罗马人形象做对比以激起种族意识。他用的拉丁词iuba是个多义词,也可
以当鬃毛(mane)讲。钱币上的Juba I的形象有着一把大胡子。想象一下,几个月后
Caesar为... 阅读全帖 |
|