c*******v 发帖数: 2599 | 1 我没听说过这个说法。
n年前念的ODE。
大概印象就是古代数学家都用解析函数,估计级数的系数来证明存在性(例如Cauchy)。
现代数学家用函数空间+超限归纳法(例如Leray-Schauder)。
你可以查查Hartman的课本看。 |
|
c*******v 发帖数: 2599 | 2 As I remember, for example,
Tychonoff's theorem was proved by using the zorn lemma,
then Arzela-ascoli theorem was proved by using the Tchonoff theorem, then
Leray-Schauder fixed point theorem was proved. These theorems are used
everywhere today. You can even find the Arezla-ascoli theorem in a finite
elements' book.
I am too old to recover the complete logic chain of these kinds of thing.
You'd better to check ODE,PDE books for details.
你的意思是说
“要想得到一个complete metric space”
需要用到Zorn引理? |
|
r**q 发帖数: 251 | 3 读了大部分,做题从the schauder approach 那章起就没兴趣做了。。。
大家都一个一个做过去么? 本来想练练基本功,但是前面才那么几章,光做题花了好
几天 |
|
x********i 发帖数: 905 | 4 http://iccm.mcm.ac.cn/dct/page/1
Invited Lectures
Group 1
Fan Qin: Cluster algebras and monoidal categorification
Fang Li: Positivity of acyclic sign-skew-symmetric cluster algebras via
unfolding method and some related topics
Cheng-Chiang Tsai: An attempt for affine Springer theory
Li Cai: The Gross-Zagier formula: arithmetic applications
Ming-Hsuan Kang: Geometric zeta functions on reductive groups over non-
archimedean local fields
Huanchen Bao: Canonical bases arising... 阅读全帖 |
|